

DO NOT OPEN

UNTIL INSTRUCTED TO DO SO

CHEM 100 – Dr. McCorkle – Exam #2A

While you wait, please complete the following information:

Name:

Student ID: _____

Turn off cellphones and stow them away. No headphones, mp3 players, hats, sunglasses, food, drinks, restroom breaks, graphing calculators, programmable calculators, or sharing calculators. Grade corrections for incorrectly marked or incompletely erased answers will not be made.

	GROUP 1 IA																	18 VIIIA
	1																	2
-	Н 1.01	2 IIA											13 11A	14 IVA	15 VA	16 VIA	17 VIIA	Не 4.00
	£	4											ъ	9	7	8	6	10
2	:5	Be											۵	U	z	0	щ	Ne
	6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
	11	12											13	14	15	16	17	18
m	Na	Mg	m	4	ഗ	9	7	00	თ	10	11	12	AI	si	٩	S	U	Ar
	22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	Β	B	26.98	28.09	30.97	32.07	35.45	39.95
~	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	¥	പ	Sc	F	>	ۍ	Mn	Fe	ვ	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
-	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.97	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
ഹ	Rb	Sr	≻	Zr	qN	Mo	Tc	Ru	Rh	Pd	Ag	B	Ľ	S	Sb	Te	_	Xe
	85.47	87.62	88.91	91.22	92.91	95.95	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
9	ട	Ba	* P	H	Ta	M	Re	S	<u>.</u>	Pt	Au	Нg	F	Рb	:E	Ро	At	Rn
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
	87	88	68	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
2	ድ	Ra	Ac **	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	5	Uut	☶	Uup	2	Uus	Ouo
	(223)	(226)	(227)	(267)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
				58	59	60	61	62	63	64	65	66	67	68	69	70	71	
	Ľ	Lanthanide Series *	Series *	e	Pr	Nd	Pm	Sm	Eu	Вd	Ъ	ð	우	ம்	Tm	γb	Lu .	
			X X	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97	
				06	91	92	93	94	95	96	97	98	66	100	101	102	103	
		Actinide Series **	eries **	Th	Pa	⊃	Np	Pu	Am	С	놂	უ	ß	Ë	Md	No	,, ,	
			74	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	

Periodic Table of the Elements

РЕВЮD

Multiple Choice – Choose the answer that best completes the question. Use an 815-E Scantron to record your response. [2 points each]

 The atomic numb A) protons D) protons & ne 		s equal to the m B) neutrons E) protons &		C) electrons			
2. What is the alkali	metal in period	14?					
A) K	B) Li	C) Ca	D) Ge	E) Br			
3. What is the mass	number of an a	tom of copper	hat has 36 neut	rons?			
A) 29	B) 36	C) 59	D) 63.55	E) 65			
4. Of the elements N A) Na	la, Mg, K, P, ar B) Mg	nd As, the elem C) K	ent with the lar D) P	gest atomic radius is: E) As			
5. Who is credited v A) Ernest Ruthe D) Robert Millil	rford	ry of the electr B) James Ch E) John Dalt	adwick	C) J.J. Thomson			
6. The elements sodA) are isotopes ofC) have the samE) have the same	of each other. e number of ne	B) ar utrons. D) ar	-	eriod of elements. roup of elements.			
7. The elements in g	roup 2A(2) for	m ions with a c	harge of				
A) 1+	B) 1–	C) 2+	D) 2-	E) 0			
8. The strongest inte	eractions betwee	en molecules of	f ammonia (NH	(₃) are			
		B) hydrogen bonds C) covalent bonds					
D) dipole-dipole	9	E) dispersior	n forces				
9. Which of the follo	owing contains	an ionic bond?					
A) CH ₄	B) H ₂ O	C) H ₂	D) CaO	E) NF ₃			
10. How many vale	nce electrons do	bes CO_3^{2-} have	?				
A) 20	B) 22	C) 24	D) 30	E) 32			

11. V	What is the mola	r mass of Mg ₃ (PO ₄) ₂ ?							
A	A) 119.28 g	B) 198.87 g	C) 230.87 g	D) 231.90 g	E) 262.87 g					
12. V	What is the mass	of 3.00 moles	of NO ₂ ?							
A	A) 15.3 g	B) 46.0 g	C) 90.0 g	D) 132 g	E) 138 g					
13. Classify the reaction $SO_3(g) + H_2(g) \rightarrow H_2SO_4(aq)$ A) combinationB) decompositionC) single replacementD) double replacementE) combustion										
A	A) combination		B) decompos	ition	C) single replacement					
Ι	D) double replace	ement	E) combustio	n						
			B) decomposition E) combustion $+ \text{HCl} \rightarrow \text{FeCl}_3 + \text{H}_2$ C) single replacement							
14. Classify the reaction Fe + HCl \rightarrow FeCl ₃ + H ₂										
14. C	Classify the react	B) 46.0 g C) 90.0 g D) 132 g E) 138 g reaction $SO_3(g) + H_2(g) \rightarrow H_2SO_4(aq)$ on B) decomposition C) single placement E) combustion reaction Fe + HCl \rightarrow FeCl ₃ + H ₂ on B) decomposition C) single								
	Classify the react A) combination	ion Fe + HCl -		ition	C) single replacement					
A	•		on $SO_3(g) + H_2(g) \rightarrow H_2SO_4(aq)$ B) decomposition c) single replacent on Fe + HCl \rightarrow FeCl ₃ + H ₂ B) decomposition C) single replacent							
A	A) combination		B) decompos		C) single replacement					
A I	A) combination	ement	B) decompos E) combustio	n	C) single replacement					
/ I 15. H	A) combination D) double replace	ement	B) decompos E) combustio	n	C) single replacement E) 16					

Calculations – Write your initials in the upper-right corner of every page that contains work. For full credit <u>show all work</u> and write neatly; give answers with correct significant figures and units. Place a box around your final answer.

16. Write the complete electron configuration of Ga. [2 points]

17. Write the condensed (abbreviated) electron configuration of Bi. [2 points]

18. How many protons, neutrons, and electrons are in an isotope of chromium-52? [3 points]

Protons: _____ Neutrons: _____ Electrons: _____

19. The fantastical element, Kentium, has three naturally occurring isotopes. The isotope Kt-104 (mass = 103.997 amu) makes up 26.54%, Kt-105 (mass = 104.953 amu) makes up 42.71%, and Kt-106 (mass = 105.926 amu) makes up 30.75%. Determine the average atomic mass of Kentium to two decimal places. [4 points]

20. Consider the compound H ₂ Se.	21. Consider the compound CS_2 .
a. Draw the Lewis structure: [2]	a. Draw the Lewis structure: [2]
b. Determine the electron geometry: [2]	b. Determine the electron geometry: [2]
c. Determine the molecular shape: [2]	c. Determine the molecular shape: [2]
d. Is the molecule polar or nonpolar? [2]	d. Is the molecule polar or nonpolar? [2]
d. Is the molecule point of nonpoint. [2]	a. is the molecule point of honpoint [2]

22. Balance the following equations: [2 points each]

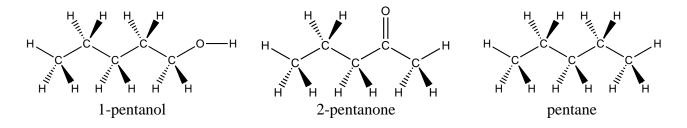
i. _____ K_3PO_4 + _____ Ca(NO_3)_2 \rightarrow _____ Ca_3(PO_4)_2 + _____ KNO_3

- ii. $C_5H_8 + O_2 \rightarrow CO_2 + H_2O$
- iii. $N_2H_4 + \underline{\qquad} H_2O_2 \rightarrow \underline{\qquad} N_2 + \underline{\qquad} H_2O$

23. How many hydrogen atoms are in 75.0 g of H_2O ? [4 points]

24. How many grams of NO are required to produce 145 g of N₂ in the following reaction? [4 points]

 $4 \operatorname{NH}_3(g) + 6 \operatorname{NO}(g) \rightarrow 5 \operatorname{N}_2(g) + 6 \operatorname{H}_2\operatorname{O}(l)$


25. How many kcal are produced when 24.0 g of O₂ react? [4 points]

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$$
 $\Delta H = -218 \text{ kcal}$

- 26. Name the following compounds: [2 points each]
 - i. Ni(C₂H₃O₂)₆
 - ii. Al₂(SO₃)₃
 - iii. N₂O₅
 - $iv. \quad SnS_2$
 - v. Cu₂CO₃
- 27. Write the formula for the following compounds: [2 points each]
 - i. cobalt(III) chlorite
 - ii. triphosphorus heptafluoride
 - iii. cadmium cyanide
 - iv. iron(II) nitrate
 - v. ammonium phosphite

28. Use the space below to sketch a model of an atom of ⁶Li. Label protons as p⁺, neutrons as n⁰, and electrons as e⁻. Include the proper numbers of each particle and arrange them in their approximate location within the atom. (You don't need to worry about drawing the atom to scale.) [5 points]

29. Circle the molecule below that will have the highest boiling point. [2 points]

30. *Challenge Question:* Aluminum reacts with oxygen to produce aluminum oxide. If 20.0 g of aluminum reacts with 50.0 g of oxygen to produce 26.3 g of aluminum oxide, what is the percent yield? [8 points]

Extra Credit: At what university did JJ Thomson, Ernest Rutherford, and James Chadwick earn their Nobel Prizes? [2 points]

Formulas & Constants (you may or may not need)

1 inch = 2.54 cm (exact)	1 mile = 5280 ft ≈ 1.609 km	1 kg ≈ 2.205 lb
1 lb = 453.6 g	1 gal = 4 qt = 8 pt ≈ 3.785 L	1 L = 1000 cm ³
T _κ = T _{°C} + 273.15	T∘ _F = 1.8 x T∘ _C + 32	T∘c = (T∘ _F – 32)/1.8
1 cal = 4.184 J	1 Cal = 1000 cal	heat = m x SH x ΔT

Avogadro's # = 6.022x10²³

Electronegativity

	1																
H																	He
2.1																	-
Li	Be											В	С	N	0	F	Ne
1.0	1.5											2.0	2.5	3.0	3.5	4.0	-
Na	Mg]										Al	Si	Р	S	Cl	Ar
0.9	1.2											1.5	1.8	2.1	2.5	3.0	-
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.8	1.6	1.6	1.8	2.0	2.4	2.8	-
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	-
Cs	Ba	57-71	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
0.7	0.9	1.1–1.2	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	-
Fr	Ra												7. S.				
0.7	0.9																

Scratch Page (to be handed in)