

DO NOT OPEN

UNTIL INSTRUCTED TO DO SO

CHEM 100 - Dr. McCorkle - Exam #2A KEY

While you wait, please complete the following information:

Name:		
Student ID:		

Turn off cellphones and stow them away. No headphones, mp3 players, hats, sunglasses, food, drinks, restroom breaks, graphing calculators, programmable calculators, or sharing calculators. Grade corrections for incorrectly marked or incompletely erased answers will not be made.

Periodic Table of the Elements

18 VIIIA	2	Æ	4.00	10	Ne	20.18	18	Ar	39.95	36	Ϋ́	83.80	54	Xe	131.29	98	Rn	(222)	118	Ono	(594)
		17	VIIA	6	ட	19.00	17	ਹ	35.45	35	Br	79.90	53	-	126.90	85	At	(210)	117	Uus	(294)
		16	VIA	8	0	16.00	16	S	32.07	34	Se	78.97	52	a	127.60	84	Ъ	(502)	116	2	(293)
		15	VA	7	z	14.01	15	Δ.	30.97	33	As	74.92	51	Sb	121.75	83	æ	208.98	115	Uup	(288)
		14	IVA	9	O	12.01	14	Σi	28.09	32	Ge	72.61	20	S	118.71	82	Pb	207.2	114	正	(589)
		13	IIIA	2	В	10.81	13	A	26.98	31	Ga	69.72	49	드	114.82	81	F	204.38	113	Uut	(284)
								12	IB	30	Zu	62.39	48	ප	112.41	80	윰	200.59	112	გ	(285)
								11	IB	53	3	63.55	47	Ag	107.87	79	Au	196.97	111	Rg	(280)
								10	VIIIB	28	Ż	58.69	46	Pd	106.42	78	ħ	195.08	110	Os	(281)
								თ	VIIIB	27	ප	58.93	45	R	102.91	77	<u>-</u>	192.22	109	Μţ	(276)
								∞	VIIIB	56	Fe	55.85	44	Ru	101.07	76	SO	190.23	108	Hs	(277)
								7	VIIB	22	Mn	54.94	43	ည	(86)	75	Re	186.21	107	B	(270)
								9	VIB	24	ර්	52.00	42	Mo	95.95	74	×	183.85	106	Sg	(271)
								ഹ	VB	23	>	50.94	41	qN	92.91	73	Та	180.95	105	음	(268)
								4	IVB	22	Ħ	47.88	40	Zr	91.22	77	生 ~~~	178.49	104	~~ Z	(267)
								m	IIIB	21	Sc	44.96	68	>	88.91	57	* e]	138.91	89	Ac **	(227)
		7	ПA	4	Be	9.01	12	Mg	24.31	20	ద్ద	40.08	38	Sr	87.62	56	Ba	137.33	88	Ra	(226)
GROUP 1 IA	Н	I	1.01	3	5	6.94	11	Na	22.99	19	¥	39.10	37	Rb	85.47	55	స	132.91	87	占	(223)
	Mi sa	-			2			က			4			2			9			7	
										a(RIC	bĿ									

		29	9	61	62	63	64	65	99	29	89	69	70	71
Lanthanide Series *		Pr	Nd	Pm	Sm	Eu	P.S	1p	Ò	웃	Щ	T	Υb	3
	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
	06	91	95	93	94	92	96	26	86	66	100	101	102	103
Actinide Series **	£	Pa	⊃	Np	Pu	Am	Cm	番	ţ	Es	F	Md	No	۲
	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(528)	(292)
												2		200

Multiple Choice – Choose the answer that best completes the question. Use an 815-E Scantron to record your response. [2 points each]

1.	The atomic number	er of an atom	•		a ` 1
	A) protons		B) neutron		C) electrons
	D) protons & neu	ıtrons	E) protons	& electrons	
2.	What is the alkali	metal in perio	od 4?		
	A) K	B) Li	C) Ca	D) Ge	E) Br
3.	What is the mass i	number of an	atom of coppe	er that has 36 neu	itrons?
	A) 29	B) 36	C) 59	D) 63.55	E) 65
4.	Of the elements N	a, Mg, K, P, a	and As, the ele	ement with the la	rgest atomic radius is:
	A) Na	B) Mg	C) K	D) P	E) As
5.	Who is credited w	ith the discov	ery of the elec	etron?	
	A) Ernest Ruther	ford	B) James (Chadwick	C) J.J. Thomson
	D) Robert Millik	an	E) John Da	alton	
6.	The elements sodi	um, magnesiu	ım, and silico	1	
	A) are isotopes o	f each other.	B)	are in the same	period of elements.
	C) have the same	number of n	eutrons. D)	are in the same	group of elements.
	E) have the same	mass number	r.		
7.	The elements in gr	roup 2A(2) fo	rm ions with a	a charge of	
	A) 1+	B) 1-	C) 2+	D) 2-	E) 0
8.	The strongest inter	ractions betwe	een molecules	of ammonia (N	H ₃) are
	A) ionic bonds		B) hydrog	gen bonds	C) covalent bonds
	D) dipole-dipole		E) dispersi	on forces	
9.	Which of the follo	wing contains	s an ionic bon	d?	
	A) CH ₄	B) H ₂ O	C) H ₂	D) CaO	E) NF ₃
10	. How many valen	ce electrons d	loes CO ₃ ²⁻ ha	ve?	
	A) 20	B) 22	C) 24	D) 30	E) 32

A) 1

11.	What is the molar	mass of Mg ₃ ($PO_4)_2$?		
1	A) 119.28 g	B) 198.87 g	C) 230.87 g	D) 231.90 g	E) 262.87 g
12.	What is the mass of	of 3.00 moles	of NO ₂ ?		
4	A) 15.3 g	B) 46.0 g	C) 90.0 g	D) 132 g	E) 138 g
13.	Classify the reacti	on $SO_3(g) + H$	$H_2(g) \rightarrow H_2SO_4$	(aq)	
1	A) combination		B) decompos	ition	C) single replacement
]	D) double replace	ment	E) combustio	n	
14.	Classify the reacti	on Fe + HCl –	\rightarrow FeCl ₃ + H ₂		
	A) combination		B) decompos	ition	C) single replacement
]	D) double replace	ment	E) combustio	n	
15.	How many orbital	s are in the thi	rd energy level	l, n=3?	

C) 5

B) 3

D) 9

E) 16

Calculations – Write your initials in the upper-right corner of every page that contains work. For full credit <u>show all work</u> and write neatly; give answers with correct significant figures and units. Place a box around your final answer.

16. Write the complete electron configuration of Ga. [2 points]

$$1s^22s^22p^63s^23p^64s^23d^{10}4p^1$$

17. Write the condensed (abbreviated) electron configuration of Bi. [2 points]

$$[Xe]6s^24f^{14}5d^{10}6p^3$$

18. How many protons, neutrons, and electrons are in an isotope of chromium-52? [3 points]

Protons: <u>24</u> Neutrons: <u>28</u> Electrons: <u>24</u>

19. The fantastical element, Kentium, has three naturally occurring isotopes. The isotope Kt-104 (mass = 103.997 amu) makes up 26.54%, Kt-105 (mass = 104.953 amu) makes up 42.71%, and Kt-106 (mass = 105.926 amu) makes up 30.75%. Determine the average atomic mass of Kentium to two decimal places. [4 points]

$$= (0.2654 \times 103.997) + (0.4271 \times 104.953) + (0.3075 \times 105.926)$$

= 105.00 amu

- 20. Consider the compound H₂Se.
 - a. Draw the Lewis structure: [2]

b. Determine the electron geometry: [2]

tetrahedral

c. Determine the molecular shape: [2]

bent

d. Is the molecule polar or nonpolar? [2]

polar

- 21. Consider the compound CS₂.
 - a. Draw the Lewis structure: [2]

b. Determine the electron geometry: [2]

linear

c. Determine the molecular shape: [2]

linear

d. Is the molecule polar or nonpolar? [2]

nonpolar

22. Balance the following equations: [2 points each]

i.
$$_{2}$$
 $K_{3}PO_{4} + _{3}$ $Ca(NO_{3})_{2} \rightarrow _{2}$ $Ca_{3}(PO_{4})_{2} + _{6}$ KNO_{3}

ii.
$$C_5H_8 + 7_0O_2 \rightarrow 5_0CO_2 + 4_0H_2O_1$$

iii.
$$N_2H_4 + \underline{2} H_2O_2 \rightarrow N_2 + \underline{4} H_2O$$

23. How many hydrogen atoms are in 75.0 g of H₂O? [4 points]

$$75.0\,\mathrm{g}\,\times\,\frac{1\,\mathrm{mol}\,\mathrm{H}_2\mathrm{O}}{18.02\,\mathrm{g}}\,\times\,\frac{2\,\mathrm{mol}\,\mathrm{H}}{1\,\mathrm{mol}\,\mathrm{H}_2\mathrm{O}}\,\times\,\frac{6.022\times10^{23}}{1\,\mathrm{mol}\,\mathrm{H}}=\,5.01\times10^{24}\mathrm{H\,atoms}$$

24. How many grams of NO are required to produce 145 g of N₂ in the following reaction? [4 points]

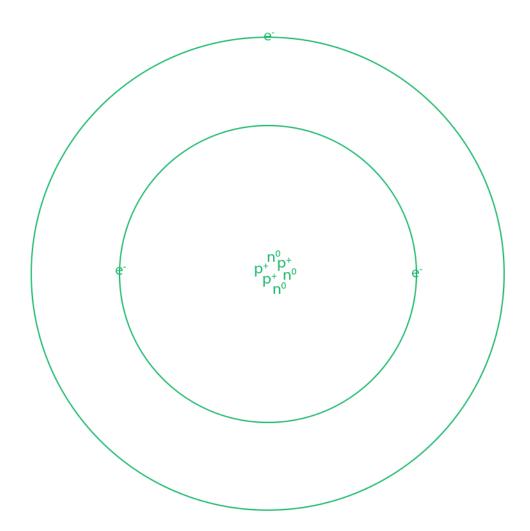
$$4 \text{ NH}_3(g) + 6 \text{ NO}(g) \rightarrow 5 \text{ N}_2(g) + 6 \text{ H}_2\text{O}(l)$$

$$145~g~N_2~\times \frac{1~mol~N_2}{28.02~g}~\times \frac{6~mol~N0}{5~mol~N_2}~\times \frac{30.01~g}{1~mol~N0} = 186~g$$

25. How many kcal are produced when 24.0 g of O₂ react? [4 points]

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$$
 $\Delta H = -218 \text{ kcal}$

24.0 g
$$O_2 \times \frac{1 \text{ mol } O_2}{32.00 \text{ g}} \times \frac{-218 \text{ kcal}}{2 \text{ mol } O_2} = 81.8 \text{ kcal}$$


26. Name the following compounds: [2 points each]

- i. $Ni(C_2H_3O_2)_6$ nickel(VI) acetate
- ii. $Al_2(SO_3)_3$ aluminum sulfite
- iii. N₂O₅ dinitrogen pentaoxide
- iv. SnS_2 tin(IV) sulfide
- v. Cu₂CO₃ copper(I) carbonate

27. Write the formula for the following compounds: [2 points each]

- i. cobalt(III) chlorite Co(ClO₂)₃
- ii. triphosphorus heptafluoride P₃F₇
- iii. cadmium cyanide Cd(CN)₂
- iv. iron(II) nitrate $Fe(NO_3)_2$
- v. ammonium phosphite (NH₄)₃PO₃

28. Use the space below to sketch a model of an atom of 6 Li. Label protons as \mathbf{p}^{+} , neutrons as \mathbf{n}^{0} , and electrons as \mathbf{e}^{-} . Include the proper numbers of each particle and arrange them in their approximate location within the atom. (You don't need to worry about drawing the atom to scale.) [5 points]

29. Circle the molecule below that will have the highest boiling point. [2 points]

30. *Challenge Question:* Aluminum reacts with oxygen to produce aluminum oxide. If 20.0 g of aluminum reacts with 50.0 g of oxygen to produce 26.3 g of aluminum oxide, what is the percent yield? [8 points]

$$4 \text{ Al}(s) + 3 \text{ O}_2(g) \rightarrow 2 \text{ Al}_2 \text{O}_3(s)$$

$$20.0 g \times \frac{1 \, mol \, Al}{26.98 \, g} \times \frac{2 \, mol \, Al_2 \, O_3}{4 \, mol \, Al} \times \frac{101.96 \, g}{1 \, mol \, Al_2 \, O_3} = 37.8 \, g \, Al_2 \, O_3$$

$$50.0 g \times \frac{1 \, mol \, O_2}{32.00 \, g} \times \frac{2 \, mol \, Al_2 O_3}{3 \, mol \, O_2} \times \frac{101.96 \, g}{1 \, mol \, Al_2 O_3} = 106 \, g \, Al_2 O_3$$

% yield =
$$\frac{actual\ yield}{theoretical\ yield} \times 100 = \frac{26.3\ g}{37.8\ g} \times 100 = 69.6\%$$

Extra Credit: At what university did JJ Thomson, Ernest Rutherford, and James Chadwick earn their Nobel Prizes? [2 points]

Cambridge University

Formulas & Constants (you may or may not need)

1 inch = 2.54 cm (exact)

1 mile = 5280 ft ≈ 1.609 km

1 kg ≈ 2.205 lb

1 lb = 453.6 g

1 gal = 4 qt = 8 pt ≈ 3.785 L

 $1 L = 1000 cm^3$

 $T_K = T_{^{\circ}C} + 273.15$

 $T_{^{\circ}F} = 1.8 \text{ x } T_{^{\circ}C} + 32$

 $T_{^{\circ}C} = (T_{^{\circ}F} - 32)/1.8$

1 cal = 4.184 J

1 Cal = 1000 cal

heat = $m \times SH \times \Delta T$

Avogadro's $\# = 6.022 \times 10^{23}$

% yield = $\frac{actual\ yield}{theoretical\ yield} \times 100$

Electronegativity

Н																	Не
2.1																	
Li	Ве											В	С	N	O	F	Ne
1.0	1.5											2.0	2.5	3.0	3.5	4.0	-
Na	Mg											A1	Si	P	S	Cl	Ar
0.9	1.2			0		40		10				1.5	1.8	2.1	2.5	3.0	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.8	1.6	1.6	1.8	2.0	2.4	2.8	-
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	-
Cs	Ba	57-71	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
0.7	0.9	1.1-1.2	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	-
Fr	Ra																
0.7	0.9																

Scratch Page (to be handed in)