

DO NOT OPEN

UNTIL INSTRUCTED TO DO SO

CHEM 110 – Dr. McCorkle – Exam #2 KEY

While you wait, please complete the following information:

Name:

Student ID: _____

Turn off cellphones and stow them away. No headphones, mp3 players, hats, sunglasses, food, drinks, restroom breaks, graphing calculators, programmable calculators, or sharing calculators. Grade corrections for incorrectly marked or incompletely erased answers will not be made.

	GROUP																	
	1																	18
	AI																đ	VIIIA
610	1																5 5	2
Ч	Т	2											13	14	15	16	17	He
	1.01	ЫA											AIII	IVA	VA	VIA	VIIA	4.00
	m	4											ъ	9	7	∞	6	10
2	: <u>-</u>	Be											ω	U	z	0	щ	Ne
	6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
	11	12											13	14	15	16	17	18
m	Na	Mg	n	4	ம	9	7	00	ი	10	11	12	AI	s:	۵.	S	U	Ar
	22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	B	IB	26.98	28.09	30.97	32.07	35.45	39.95
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	¥	Ca	Sc	Ħ	>	ა	Mn	Fe	8	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.97	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
പ	Rb	S	7	Zr	ЧN	Мо	Tc	Ru	Rh	Pd	Ag	8	<u>_</u>	Sn	Sb	Te	_	Xe
	85.47	87.62	88.91	91.22	92.91	95.95	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
9	ട്	Ba	ra *	H ///	Ta	N	Re	S	F	Pt	Au	ВН	F	Рb	: 10 10	Ро	At	Rn
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
	87	88	68	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Ţ	Ra	Ac **	Rf	в	Sg	Bh	Hs	Mt	S	Rg	ຽ	Uut	Ŧ	Uup	Lv	Uus	Uuo
	(223)	(226)	(227)	(267)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
				58	59	60	61	62	63	64	65	99	67	68	69	70	71	
		anthanide	Series *	Ce	Pr	Nd	Ът	Sm	Eu	Gd	Tb	5	Ч	ш	Tm	٩Y	Lu	
			. `	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97	
				06	91	92	93	94	95	96	97	98	66	100	101	102	103	
		Actinide 5	Series **	T 1	Pa		٩N	Pu	Am	Б С	剐	Ъ	Es	БП	Md	No	ر ر ۲	
				232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	

Periodic Table of the Elements

PERIOD

Multiple Choice – Choose the answer that best completes the question. Use an 815-E Scantron to record your response. [2 points each]

A) 2.5 MB) $1.0 M$ C) $5.0 M$ D) $10. M$ E) $2.0 M$ 2.What is the molarity of a KCl solution made by diluting 75.0 mL of a 0.200 M solution to a final volume of 100. mL? A) $0.267 M$ B) $0.150 M$ C) $0.200 M$ D) $6.67 M$ E) $0.100 M$ 3.Calculate the mass of solute present in 150.0 g of a 3.50% solution. A) $0.0233 g$ B) $2.33 g$ C) $5.25 g$ D) $52.5 g$ E) $4290 mL$ 4.How many formula units are in $53.2 g$ of $(NH_4)_2CrO_4$? A) 5.81×10^{-25} B) 1.34×10^{-20} C) 4.87×10^{27} D) 2.11×10^{23} E) 2.39×10^{23} 5.What mass in grams of phosphorus is in $72.4 g$ of $Zn_3(PO_4)_2$? A) $0.0121 g$ B) $2.90 g$ C) $5.80 g$ D) $11.6 g$ E) $13.9 g$ For questions 6-9, consider the following redox reaction: HNO ₃ (aq) + HI(aq) \rightarrow NO(g) + $I_2(s) + H_2O(l)$ 6.Which element was oxidized? A) HB) NC) OD) I7.Which element was reduced?	1.	What is the molar	ity of a solution co	ntaining 5.0 moles	of KCl in 2.0 L of	solution?
2. What is the molarity of a KCl solution made by diluting 75.0 mL of a 0.200 M solution to a final volume of 100. mL? A) 0.267 M B) 0.150 M C) 0.200 M D) 6.67 M E) 0.100 M 3. Calculate the mass of solute present in 150.0 g of a 3.50% solution. A) 0.0233 g B) 2.33 g C) 5.25 g D) 52.5 g E) 4290 mL 4. How many formula units are in 53.2 g of (NH ₄) ₂ CrO ₄ ? A) 5.81×10 ⁻²⁵ B) 1.34×10 ⁻²⁰ C) 4.87×10 ²⁷ D) 2.11×10 ²³ E) 2.39×10 ²³ 5. What mass in grams of phosphorus is in 72.4 g of Zn ₃ (PO ₄) ₂ ? A) 0.0121 g B) 2.90 g C) 5.80 g D) 11.6 g E) 13.9 g For questions 6-9, consider the following redox reaction: HNO ₃ (aq) + HI(aq) → NO(g) + I ₂ (s) + H ₂ O(l) 6. Which element was oxidized? A) H B) N C) O D) I 7. Which element was reduced?		A) 2.5 M	B) 1.0 <i>M</i>	C) 5.0 <i>M</i>	D) 10. <i>M</i>	E) 2.0 <i>M</i>
2. What is the molarity of a KCl solution made by diluting 75.0 mL of a 0.200 M solution to a final volume of 100. mL? A) 0.267 M B) 0.150 M C) 0.200 M D) 6.67 M E) 0.100 M 3. Calculate the mass of solute present in 150.0 g of a 3.50% solution. A) 0.0233 g B) 2.33 g C) 5.25 g D) 52.5 g E) 4290 mL 4. How many formula units are in 53.2 g of (NH ₄) ₂ CrO ₄ ? A) 5.81×10 ⁻²⁵ B) 1.34×10 ⁻²⁰ C) 4.87×10 ²⁷ D) 2.11×10 ²³ E) 2.39×10 ²³ 5. What mass in grams of phosphorus is in 72.4 g of Zn ₃ (PO ₄) ₂ ? A) 0.0121 g B) 2.90 g C) 5.80 g D) 11.6 g E) 13.9 g For questions 6-9, consider the following redox reaction: HNO ₃ (aq) + HI(aq) → NO(g) + I ₂ (s) + H ₂ O(l) 6. Which element was oxidized? A) H B) N C) O D) I 7. Which element was reduced?						
Inal volume of 100. mL?A) 0.267 MB) 0.150 MC) 0.200 MD) 6.67 ME) 0.100 M3. Calculate the mass of solute present in 150.0 g of a 3.50% solution. A) 0.0233 gB) 2.33 gC) 5.25 gD) 52.5 gE) 4290 mL4. How many formula units are in 53.2 g of (NH ₄) ₂ CrO ₄ ? A) 5.81×10 ⁻²⁵ B) 1.34×10 ⁻²⁰ C) 4.87×10 ²⁷ D) 2.11×10 ²³ E) 2.39×10 ²³ 5. What mass in grams of phosphorus is in 72.4 g of Zn ₃ (PO ₄) ₂ ? A) 0.0121 gB) 2.90 gC) 5.80 gD) 11.6 gE) 13.9 gFor questions 6-9, consider the following redox reaction: HNO ₃ (aq) + HI(aq) \rightarrow NO(g) + I ₂ (s) + H ₂ O(l)6. Which element was oxidized? A) HB) NC) OD) I7. Which element was reduced?	2.	What is the molar	ity of a KCl solutio	on made by diluting	g 75.0 mL of a 0.20	00 M solution to a
A) 0.267 <i>M</i> B) 0.150 <i>M</i> C) 0.200 <i>M</i> D) 6.67 <i>M</i> E) 0.100 <i>M</i> 3. Calculate the mass of solute present in 150.0 g of a 3.50% solution. A) 0.0233 g B) 2.33 g C) 5.25 g D) 52.5 g E) 4290 mL 4. How many formula units are in 53.2 g of (NH ₄) ₂ CrO ₄ ? A) 5.81×10 ⁻²⁵ B) 1.34×10 ⁻²⁰ C) 4.87×10 ²⁷ D) 2.11×10 ²³ E) 2.39×10 ²³ 5. What mass in grams of phosphorus is in 72.4 g of Zn ₃ (PO ₄) ₂ ? A) 0.0121 g B) 2.90 g C) 5.80 g D) 11.6 g E) 13.9 g <i>For questions 6-9, consider the following redox reaction:</i> HNO ₃ (<i>aq</i>) + HI(<i>aq</i>) \rightarrow NO(<i>g</i>) + I ₂ (<i>s</i>) + H ₂ O(<i>l</i>) 6. Which element was oxidized? A) H B) N C) O D) I 7. Which element was reduced?		final volume of 10	0. mL?			
3. Calculate the mass of solute present in 150.0 g of a 3.50% solution. A) 0.0233 gB) 2.33 gC) 5.25 gD) 52.5 gE) 4290 mL4. How many formula units are in 53.2 g of $(NH_4)_2CrO_4$? A) 5.81×10 ⁻²⁵ B) 1.34×10 ⁻²⁰ C) 4.87×10 ²⁷ D) 2.11×10 ²³ E) 2.39×10 ²³ E) 2.39×10 ²³ 5. What mass in grams of phosphorus is in 72.4 g of Zn ₃ (PO ₄) ₂ ? A) 0.0121 gE) 2.90 gC) 5.80 gD) 11.6 gE) 13.9 gFor questions 6-9, consider the following redox reaction: HNO ₃ (aq) + HI(aq) \rightarrow NO(g) + I ₂ (s) + H ₂ O(l)6. Which element was oxidized? A) HB) NC) OD) I7. Which element was reduced?		A) 0.267 <i>M</i>	B) 0.150 <i>M</i>	C) 0.200 M	D) 6.67 <i>M</i>	E) 0.100 <i>M</i>
3. Calculate the mass of solute present in 150.0 g of a 3.50% solution. A) 0.0233 g B) 2.33 g C) 5.25 g D) 52.5 g E) 4290 mL 4. How many formula units are in 53.2 g of (NH ₄) ₂ CrO ₄ ? A) 5.81×10 ⁻²⁵ B) 1.34×10 ⁻²⁰ C) 4.87×10 ²⁷ D) 2.11×10 ²³ E) 2.39×10 ²³ 5. What mass in grams of phosphorus is in 72.4 g of Zn ₃ (PO ₄) ₂ ? A) 0.0121 g B) 2.90 g C) 5.80 g D) 11.6 g E) 13.9 g For questions 6-9, consider the following redox reaction: HNO ₃ (aq) + HI(aq) \rightarrow NO(g) + I ₂ (s) + H ₂ O(l) 6. Which element was oxidized? A) H B) N C) O D) I 7. Which element was reduced?	2			. 150.0		
A) 0.0233 g B) 2.33 g C) 5.25 g D) 52.5 g E) 4290 mL 4. How many formula units are in 53.2 g of (NH ₄) ₂ CrO ₄ ? A) 5.81×10 ⁻²⁵ B) 1.34×10 ⁻²⁰ C) 4.87×10 ²⁷ D) 2.11×10 ²³ E) 2.39×10 ²³ 5. What mass in grams of phosphorus is in 72.4 g of Zn ₃ (PO ₄) ₂ ? A) 0.0121 g B) 2.90 g C) 5.80 g D) 11.6 g E) 13.9 g For questions 6-9, consider the following redox reaction: HNO ₃ (aq) + HI(aq) \rightarrow NO(g) + I ₂ (s) + H ₂ O(l) 6. Which element was oxidized? A) H B) N C) O D) I 7. Which element was reduced?	3.	Calculate the mas	s of solute present	in 150.0 g of a 3.50	J% solution.	
4. How many formula units are in 53.2 g of (NH ₄) ₂ CrO ₄ ? A) 5.81×10^{-25} B) 1.34×10^{-20} C) 4.87×10^{27} D) 2.11×10^{23} E) 2.39×10^{23} 5. What mass in grams of phosphorus is in 72.4 g of Zn ₃ (PO ₄) ₂ ? A) 0.0121 g B) 2.90 g C) 5.80 g D) 11.6 g E) 13.9 g For questions 6-9, consider the following redox reaction: HNO ₃ (aq) + HI(aq) \rightarrow NO(g) + I ₂ (s) + H ₂ O(l) 6. Which element was oxidized? A) H B) N C) O D) I 7. Which element was reduced?		A) 0.0233 g	B) 2.33 g	C) 5.25 g	D) 52.5 g	E) 4290 mL
4. How many formula units are in 53.2 g of $(NH_4)_2CrO_4$? A) 5.81×10^{-25} B) 1.34×10^{-20} C) 4.87×10^{27} D) 2.11×10^{23} E) 2.39×10^{23} 5. What mass in grams of phosphorus is in 72.4 g of $Zn_3(PO_4)_2$? A) 0.0121 g B) 2.90 g C) 5.80 g D) 11.6 g E) 13.9 g For questions 6-9, consider the following redox reaction: HNO ₃ (aq) + HI(aq) \rightarrow NO(g) + I ₂ (s) + H ₂ O(l) 6. Which element was oxidized? A) H B) N C) O D) I 7. Which element was reduced?						
A) 5.81×10^{-25} B) 1.34×10^{-20} C) 4.87×10^{27} D) 2.11×10^{23} E) 2.39×10^{23} 5. What mass in grams of phosphorus is in 72.4 g of $Zn_3(PO_4)_2$? A) 0.0121 g B) 2.90 g C) 5.80 g D) 11.6 g E) 13.9 g For questions 6-9, consider the following redox reaction: HNO ₃ (aq) + HI(aq) \rightarrow NO(g) + I ₂ (s) + H ₂ O(l) 6. Which element was oxidized? A) H B) N C) O D) I 7. Which element was reduced?	4.	How many formu	la units are in 53.2	g of $(NH_4)_2CrO_4$?		
5. What mass in grams of phosphorus is in 72.4 g of $Zn_3(PO_4)_2$? A) 0.0121 g B) 2.90 g C) 5.80 g D) 11.6 g E) 13.9 g For questions 6-9, consider the following redox reaction: HNO ₃ (aq) + HI(aq) \rightarrow NO(g) + I ₂ (s) + H ₂ O(l) 6. Which element was oxidized? A) H B) N C) O D) I 7. Which element was reduced?		A) 5.81×10 ⁻²⁵	B) 1.34×10 ⁻²⁰	C) 4.87×10 ²⁷	D) 2.11×10^{23}	E) 2.39×10^{23}
5. What mass in grams of phosphorus is in 72.4 g of $Zn_3(PO_4)_2$? A) 0.0121 g B) 2.90 g C) 5.80 g D) 11.6 g E) 13.9 g For questions 6-9, consider the following redox reaction: HNO ₃ (aq) + HI(aq) \rightarrow NO(g) + I ₂ (s) + H ₂ O(l) 6. Which element was oxidized? A) H B) N C) O D) I 7. Which element was reduced?						
A) 0.0121 g B) 2.90 g C) 5.80 g D) 11.6 g E) 13.9 g For questions 6-9, consider the following redox reaction: $HNO_3(aq) + HI(aq) \rightarrow NO(g) + I_2(s) + H_2O(l)$ 6. Which element was oxidized? A) H B) N C) O D) I 7. Which element was reduced?	5.	What mass in gran	ns of phosphorus i	s in 72.4 g of $Zn_3(l$	$PO_4)_2?$	
For questions 6-9, consider the following redox reaction: $HNO_3(aq) + HI(aq) \rightarrow NO(g) + I_2(s) + H_2O(l)$ 6. Which element was oxidized? A) HB) NC) OD) I7. Which element was reduced?		A) 0.0121 g	B) 2.90 g	C) 5.80 g	D) 11.6 g	E) 13.9 g
For questions 6-9, consider the following redox reaction: $HNO_3(aq) + HI(aq) \rightarrow NO(g) + I_2(s) + H_2O(l)$ 6. Which element was oxidized? A) H B) N C) O D) I 7. Which element was reduced?						
 For questions 6-9, consider the following redox reaction: HNO₃(aq) + HI(aq) → NO(g) + I₂(s) + H₂O(l) 6. Which element was oxidized? A) H B) N C) O D) I 7. Which element was reduced? 						
$HNO_{3}(aq) + HI(aq) \rightarrow NO(g) + I_{2}(s) + H_{2}O(l)$ 6. Which element was oxidized? A) H B) N C) O D) I 7. Which element was reduced?	Fo	r questions 6-9, co	nsider the followir	ng redox reaction:		
 6. Which element was oxidized? A) H B) N C) O D) I 7. Which element was reduced? 			$HNO_3(aq) + H$	$I(aq) \rightarrow NO(g) + 1$	$\mathbf{H}_2(s) + \mathbf{H}_2\mathbf{O}(l)$	
A) H B) N C) O D) I 7. Which element was reduced?	6	Which element w	as oxidized?			
7. Which element was reduced?	0.		B) N	C	D) I	
7. Which element was reduced?		A) 11	D) IN	0		
	7	Which element w	as reduced?			
A) H B) N C) O D) I		A) H	B) N	C) Q	D) I	

8. Which substance is the oxidizing agent? B) HI A) HNO₃ C) NO D) I₂ E) H₂O

9. Which substance is the reducing agent? A) HNO₃ B) HI C) NO D) I₂ E) H_2O Calculations – Write your initials in the upper-right corner of every page that contains work. For full credit show all work and write neatly; give answers with correct significant figures and units. Place a box around your final answer.

10. Write formulas for the following compounds: [2 points each]

a.	diselenium tetrachloride	Se ₂ Cl ₄
b.	hyposulfurous acid	H_2SO_2
c.	cobalt(III) chlorite	Co(ClO ₂) ₃
d.	zinc phosphide trihydrate	Zn ₃ P ₂ ·3H ₂ O
e.	tin(IV) dichromate	Sn(Cr ₂ O ₇) ₂
f.	calcium cyanide	Ca(CN) ₂
g.	pentaiodine nonaselenide	I ₅ Se ₉
h.	lead(IV) perbromate	Pb(BrO ₄) ₄
i.	uranium(VI) nitride	UN ₂
j.	hydroselenic acid	$H_2Se(aq)$

Dr. McCorkle

11. Name the following compounds: [2 points each] a. BaSeO₃ \cdot 5H₂O barium selenite pentahydrate b. P₆O₁₀ hexaphosphorus decaoxide c. HMnO₄ [acid name] permanganic acid d. $Pt(HSO_4)_2$ platinum(II) hydrogen sulfate OR platinum(II) bisulfate **bismuth(III) borate** e. BiBO₃ f. RaO₂ radium peroxide g. $Cu_2C_2O_4$ copper(I) oxalate $h. \quad Cl_3F_7$ trichlorine heptafluoride i. NiBr₃· $\frac{1}{2}$ H₂O nickel(III) bromide hemihydrate j. HIO [acid name] hypoiodous acid

12. Determine the percentage of chromium in Ni(Cr₂O₇)₃. [3 points]

Molar mass = 706.69 g/mol

 $\% Cr = \frac{6 \times Cr}{Ni(Cr_2O_7)_3} \times 100 = \frac{6 \times 52.00}{706.69} \times 100 = \frac{312}{706.69} \times 100 = 44.1\%$

13. Consider the following reaction:

$$2 \operatorname{H_3PO}_4(aq) + \operatorname{Al}_2(\operatorname{CO}_3)_3(s) \rightarrow 3 \operatorname{H_2O}(l) + 3 \operatorname{CO}_2(g) + 2 \operatorname{AlPO}_4(s)$$

When 75.0 mL of 3.5 M H₃PO₄ reacts with excess Al₂(CO₃)₃, what mass in grams of CO₂ can be produced? [5 points]

$$75.0 \text{ mL} \times \frac{10^{-3} \text{ L}}{1 \text{ mL}} \times \frac{3.5 \text{ mol } \text{H}_3 \text{PO}_4}{1 \text{ L}} \times \frac{3 \text{ mol } \text{CO}_2}{2 \text{ mol } \text{H}_3 \text{PO}_4} \times \frac{44.01 \text{ g}}{1 \text{ mol } \text{CO}_2} = 17 \text{ g}$$

14. Consider the following unbalanced equation for the combustion of sucrose, $C_{12}H_{22}O_{11}$:

$$\underline{\qquad} C_{12}H_{22}O_{11}(s) + \underline{\qquad} D_2(g) \rightarrow \underline{\qquad} CO_2(g) + \underline{\qquad} H_2O(g)$$

a. How many grams of CO_2 could be produced from the reaction of 10.0 g of $C_{12}H_{22}O_{11}$ and 10.0 g of O_2 ? [6 points]

$$10.0 \text{ g} \times \frac{1 \text{ mol } C_{12} \text{H}_{22} \text{O}_{11}}{342.34 \text{ g}} \times \frac{12 \text{ mol } \text{CO}_2}{1 \text{ mol } \text{C}_{12} \text{H}_{22} \text{O}_{11}} \times \frac{44.01 \text{ g}}{1 \text{ mol } \text{CO}_2} = 15.4 \text{ g}$$

$$10.0 \text{ g} \times \frac{1 \text{ mol } O_2}{32.00 \text{ g}} \times \frac{12 \text{ mol } CO_2}{12 \text{ mol } O_2} \times \frac{44.01 \text{ g}}{1 \text{ mol } CO_2} = 13.8 \text{ g}$$

b. How many grams of the excess reagent will remain? [4 points]

 $13.8 \text{ g CO}_2 \times \frac{1 \text{ mol CO}_2}{44.01 \text{ g}} \times \frac{1 \text{ mol C}_{12} \text{H}_{22} \text{O}_{11}}{12 \text{ mol O}_2} \times \frac{342.34 \text{ g}}{1 \text{ mol C}_{12} \text{H}_{22} \text{O}_{11}} = 8.95 \text{ g used}$

10.0 g - 8.95 g = 1.05 g remain

c. Determine the percent yield if the actual yield of CO₂ produced is 12.7 g. [2 points]

% yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100 = \frac{12.7}{13.8} \times 100 = 92.0\%$$

15. Dianabol is one of the anabolic steroids that has been used by some athletes to increase the size and strength of their muscles, often with serious side effects. In one experiment, 14.765 g of Dianabol is burned, and 43.257 g CO₂ and 12.395 g H₂O are formed. In a second experiment, the molar mass of Dianabol is found to be approximately 300 g/mol. What is the molecular formula for Dianabol? [8 points]

43.257 g CO₂ ×
$$\frac{1 \text{ mol CO}_2}{44.01 \text{ g}}$$
 × $\frac{1 \text{ mol C}}{1 \text{ mol CO}_2}$ = 0.98289 mol C

 $12.395 \text{ g H}_20 \times \frac{1 \text{ mol H}_20}{18.02 \text{ g}} \times \frac{2 \text{ mol H}}{1 \text{ mol H}_20} = 1.37\underline{5}7 \text{ mol H}$

0.98289 mol C ×
$$\frac{12.01 \text{ g}}{1 \text{ mol C}}$$
 = 11.80 g C
1.3757 mol H × $\frac{1.01 \text{ g}}{1 \text{ mol H}}$ = 1.389 g H

14.765 g total - 11.80 g C - 1.389 g H = 1.5<u>7</u>6 g O

$$1.5\underline{7}6 \text{ g } 0 \times \frac{1 \text{ mol } 0}{16.00 \text{ g}} = 0.0985 \text{ mol } 0$$

 $C_{\underline{0.982\underline{8}9 \text{ mol}}} \underbrace{H_{\underline{1.3757}}}_{0.0985 \text{ mol}} \underbrace{O_{\underline{0.0985 \text{ mol}}}}_{0.0985 \text{ mol}} = C_{\underline{10}} H_{\underline{14}} O_{\underline{1}}$

 $\frac{molar\ mass}{empirical\ mass} = \frac{300\ g/mol}{150\ g/mol} = 2$

 $(C_{10}H_{14}O_1) \times 2 = C_{20}H_{28}O_2$

16. A 10.00 mL sample of sulfurous acid requires 14.75 mL of 0.100 *M* potassium hydroxide to titrate to the equivalence point. Determine the molarity of the sulfurous acid sample. (*Hint: Write a balanced equation.*) [6 points]

$$H_2SO_3(aq) + 2 \text{ KOH}(aq) \rightarrow K_2SO_3(aq) + 2 H_2O(l)$$

 $14.75 \text{ mL} \times \frac{10^{-3} \text{ L}}{1 \text{ mL}} \times \frac{0.100 \text{ mol KOH}}{1 \text{ L}} \times \frac{1 \text{ mol H}_2 \text{SO}_3}{2 \text{ mol KOH}} = 7.3\underline{7}5 \times 10^{-4} \text{ mol H}_2 \text{SO}_3$ $10.00 \text{ mL} \times \frac{10^{-3} \text{ L}}{1 \text{ mL}} = 0.01000 \text{ L}$

 $M = \frac{\text{mol solute}}{\text{L solution}} = \frac{7.3\underline{7}5 \times 10^{-4} \text{ mol } \text{H}_2\text{SO}_3}{0.01000 \text{ L}} = 0.0738 \text{ M}$

17. Predict the products and write a balanced equation for the reaction between ammonium phosphate and calcium hydroxide. Be sure to include physical states: [5 points]

2 (NH₄)₃PO₄(*aq*) + 3 Ca(OH)₂(*aq*) \rightarrow Ca₃(PO₄)₂(*s*) + 6 NH₄OH(*aq*)

2 (NH₄)₃PO₄(*aq*) + 3 Ca(OH)₂(*aq*) \rightarrow Ca₃(PO₄)₂(*s*) + 6 NH₃(*g*) + 6 H₂O(*l*)

- 18. Write the balanced full chemical equation, complete ionic equation, and net ionic equation for the reaction between titanium(IV) sulfate and lead(II) acetate. Be sure to include physical states.
 - a. Full Chemical Equation: [4 points]

 $\mathrm{Ti}(\mathrm{SO}_4)_2(aq) + 2 \operatorname{Pb}(\mathrm{C}_2\mathrm{H}_3\mathrm{O}_2)_2(aq) \rightarrow \mathrm{Ti}(\mathrm{C}_2\mathrm{H}_3\mathrm{O}_2)_4(aq) + 2 \operatorname{Pb}\mathrm{SO}_4(s)$

b. Complete Ionic Equation: [4 points]

 $\frac{\mathrm{Ti}^{4+}(aq)}{\mathrm{Ti}^{4+}(aq)} + 2 \operatorname{SO_4^{2-}}(aq) + 2 \operatorname{Pb}^{2+}(aq) + 4 \operatorname{C_2H_3O_2^{=}}(aq) \rightarrow \frac{\mathrm{Ti}^{4+}(aq)}{\mathrm{Ti}^{4+}(aq)} + 4 \operatorname{C_2H_3O_2^{=}}(aq) + 2 \operatorname{PbSO_4}(s)$

c. Net Ionic Equation: [2 points]

 $2 \operatorname{SO_4^{2^-}}(aq) + 2 \operatorname{Pb}^{2^+}(aq) \rightarrow 2 \operatorname{Pb}\operatorname{SO_4}(s)$

Reduce to...

 $\mathrm{SO_4}^{2-}(aq) + \mathrm{Pb}^{2+}(aq) \rightarrow \mathrm{Pb}\mathrm{SO}_4(s)$

d. What are the spectator ions, if any? [2 points]

 Ti^{4+} and $C_2H_3O_2^-$

Extra Credit Joke: What TV show does cesium and iodine love watching together? [2 points]

CSI

Formulas & Constants (you may or may not need)

1 inch = 2.54 cm (exact)	1 mile = 5280 ft ≈ 1.609 km	1 kg ≈ 2.205 lb
1 lb = 453.6 g; 1 lb = 16 oz	1 gal = 4 qt = 8 pt ≈ 3.785 L	$1 L = 1000 cm^3$
T _K = T _{°C} + 273.15	T _{°F} = 1.8 x T _{°C} + 32	$T_{^{\circ}C} = (T_{^{\circ}F} - 32)/1.8$
1 cal = 4.184 J	1 Cal = 1000 cal	$q = m \ge C \ge \Delta T$
Avogadro's # = 6.022×10 ²³		

TABLE 4.1 Solubility Rules for Ionic Compoun	ds in Water
Compounds Containing the Following lons Are Generally Soluble	Exceptions
Li^+ , Na ⁺ , K ⁺ , and NH ₄ ⁺	None
NO_3^- and $C_2H_3O_2^-$	None
CI^- , Br^- , and I^-	When these ions pair with Ag^+ , Hg_2^{2+} , or Pb^{2+} , the resulting compounds are insoluble.
S04 ²⁻	When SO_4^{2-} pairs with Sr^{2+} , Ba^{2+} , Pb^{2+} , Ag^+ , or Ca^{2+} , the resulting compound is insoluble.
Compounds Containing the Following lons Are Generally Insoluble	Exceptions
OH^- and S^{2-}	When these ions pair with Li^+ , Na^+ , K^+ , or NH_4^+ , the resulting compounds are soluble.
	When S^{2-} pairs with Ca^{2+} , Sr^{2+} , or Ba^{2+} , the resulting compound is soluble.
	When OH^- pairs with Ca^{2+} , Sr^{2+} , or Ba^{2+} , the resulting compound is slightly soluble.
CO_3^{2-} and PO_4^{3-}	When these ions pair with Li^+ , Na^+ , K^+ , or NH_4^+ , the resulting compounds are soluble.

Scratch Page (to be handed in)