

DO NOT OPEN

UNTIL INSTRUCTED TO DO SO

CHEM 110 – Dr. McCorkle – Exam #3

While you wait, please complete the following information:

Name:

Student ID: _____

Turn off cellphones and stow them away. No headphones, mp3 players, hats, sunglasses, food, drinks, restroom breaks, graphing calculators, programmable calculators, or sharing calculators. Grade corrections for incorrectly marked or incompletely erased answers will not be made.

	GROUP 1																	18	
	ΙA																	VIIIA	
	H	1.																2	
-	т	2											13	14	15	16	17	He	
	1.01	IIA											IIIA	IVA	VA	VIA	VIIA	4.00	
	m	4											ъ	9	7	Ø	თ	10	
2	5	Be											8	U	z	0	щ	Ne	
	6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18	
	11	12											13	14	15	16	17	18	
m	Na	Mg	m	4	ம	9	7	00	თ	10	11	12	AI	Si	٩.	S	U	Ar	
	22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IΒ	IB	26.98	28.09	30.97	32.07	35.45	39.95	
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
4	¥	Ca	Sc	Ħ	>	ა	Mn	Fe	ვ	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
- -	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.97	79.90	83.80	
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
ഹ	Rb	Sr	≻	Zr	ЧN	Мо	Tc	Ru	Rh	ЪЧ	Ag	3	L	Sn	Sb	Te	_	Xe	
	85.47	87.62	88.91	91.22	92.91	95.95	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29	
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
9	ട	Ba	* e T	Ŧ	Ta	M	Re	S	<u>.</u>	Pt	Au	Нg	F	Ъb	:E	Ро	At	Rn	
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)	
	87	88	68	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	
7	ሴ	Ra	Ac **	Rf	Ъb	Sg	Bh	Hs	Mt	DS	Rg	5	Uut	T	Uup	Lv	Uus	Ouo	
	(223)	(226)	(227)	(267)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)	
															3				
			~ ~	58	59	60	61	62	63	64	65	66	67	68	69	70	71		
	ľ	Lanthanide Series *	Series *	S	Pr	PN	Pm	Sm	Eu	Вd	Тb	Q	우	Ъ	Тт	۲b	Ľ		
			XX.	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97		
			11	06	91	92	93	94	95	96	97	98	66	100	101	102	103		
		Actinide Series **	eries **	ЧЦ	Pa	⊃	Np	Pu	Am	Б С	累	പ്	Es	Б	Md	No	۲.		
			/ /1	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)		

Periodic Table of the Elements

PERIOD

Multiple Choice – Choose the answer that best completes the question. Use an 815-E Scantron to record your response. [2 points each]

- 1. In the kinetic molecular theory of gas behavior, the assumption is made that gas molecules A) occasionally come to rest.
 - B) are attracted to each other by strong forces.
 - C) are close together in their container.
 - D) move with a kinetic energy equal to their centigrade temperature.

E) move rapidly in random directions.

- 2. The atmospheric pressure in Denver, CO is 633 mmHg. What is this pressure in atm?
 A) 1.20 atm B) 633 atm C) 0.833 atm D) 1.00 atm E) 127 atm
- 3. The volume of a gas with a pressure of 1.2 atm increases from 1.0 L to 4.0 L. What is the final pressure of the gas, assuming no change in moles or temperature?
 A) 1.2 atm B) 0.30 atm C) 3.3 atm D) 4.8 atm E) 1.0 atm
- 4. Complete the following statement: In Charles's Law, the volume of a gas ______ when the ______ decreases.

A) increases; temperature	B) increases; quantity of gas
C) increases; pressure	D) decreases; temperature
E) decreases; pressure	

- 5. A gas at 5.00 atm pressure was stored in a tank during the winter at 5.0 °C. During the summer, the temperature in the storage area reached 40.0 °C. What was the pressure in the gas tank then?
 - A) 0.625 atm B) 4.44 atm C) 5.63 atm D) 40.0 atm E) 69.5 atm
- 6. A mixture of 10.0 g of Ne and 10.0 g of Ar have a total pressure of 1.6 atm. What is the partial pressure of Ne?
 A) 0.40 atm B) 0.54 atm C) 0.80 atm D) 1.1 atm E) 1.3 atm
- 7. How many moles of neon occupy a volume of 14.3 L at STP?A) 36.7 molesB) 32.0 molesC) 6.45 molesD) 0.638 molesE) 1.57 moles
- 8. Calculate the root mean square velocity of nitrogen molecules at 25 °C.
 A) 149 m/s
 B) 297 m/s
 C) 515 m/s
 D) 729 m/s
 E) 1090 m/s

- 9. Define *energy*.
 - A) the flow of energy caused by a chemical reaction
 - B) the flow of energy caused by a temperature difference
 - C) the result of a force acting through a distance
 - D) the capacity to do work
 - E) a chemical reaction
- 10. The gas in a piston (defined as the system) is warmed and absorbs 640. J of heat. The expansion performs 344 J of work on the surroundings. What is the change in internal energy for the system in joules?

A) 296 J B) 984 J C) -296 J D) -984 J E) 1.86 J

- 11. Which is the correct equation for the formation of Na₂CO₃(*s*) from its elements in their standard states?
 - A) $2 \operatorname{Na}(s) + \operatorname{C}(s, graphite) + 3 \operatorname{O}(g) \rightarrow \operatorname{Na_2CO_3}(s)$
 - B) $2 \operatorname{Na}(s) + \operatorname{C}(s, graphite) + 3/2 \operatorname{O}_2(g) \rightarrow \operatorname{Na}_2\operatorname{CO}_3(s)$
 - C) $2 \operatorname{Na}^+(aq) + \operatorname{CO}_3^{2-}(aq) \rightarrow \operatorname{Na}_2\operatorname{CO}_3(s)$
 - D) 4 Na(s) + 2 C(s, graphite) + 6 O(g) \rightarrow 2 Na₂CO₃(s)
 - E) $4 \operatorname{Na}(s) + 2 \operatorname{C}(s, graphite) + 3 \operatorname{O}_2(g) \rightarrow 2 \operatorname{Na}_2\operatorname{CO}_3(s)$

Calculations – Write your initials in the upper-right corner of every page that contains work. For full credit show all work and write neatly; give answers with correct significant figures and units. Place a box around your final answer.

12. A sample of nitrogen gas had a volume of 500. mL, a pressure in its closed container of 640. torr, and a temperature of 25 °C. What was the new volume of the gas <u>in liters</u> when the temperature was changed to 50 °C and the new pressure was 1.00 atm? [6 points]

13. A 0.334 g sample of an unknown halogen occupies 109 mL at 125 °C and 1.41 atm. What is the identity of the halogen? [5 points]

14. Consider the following reaction:

$$2 \operatorname{H}_{3}\operatorname{PO}_{4}(aq) + \operatorname{Al}_{2}(\operatorname{CO}_{3})_{3}(s) \rightarrow 3 \operatorname{H}_{2}\operatorname{O}(l) + 3 \operatorname{CO}_{2}(g) + 2 \operatorname{AlPO}_{4}(s)$$

When 35.0 g of $Al_2(CO_3)_3$ reacts, how many L of CO_2 gas are formed at 55 °C and a pressure of 975 mmHg? [5 points]

15. A 4.98 g sample of aniline (C₆H₅NH₂) was combusted in a bomb calorimeter with a heat capacity of 4.25 kJ/°C. If the temperature rose from 29.5 °C to 69.8 °C, determine the value of ΔE_{rxn} for aniline. [4 points]

16. What volume in mL of benzene (C₆H₆, d = 0.88 g/mL) is required to produce 1.5×10^3 kJ of heat according to the following reaction: [4 points]

$$2 C_6 H_6(l) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2 O(l)$$
 $\Delta H^{\circ}_{rxn} = -6278 \text{ kJ}$

17. A piece of iron (mass = 25.0 g) at 125 °C is placed in a Styrofoam coffee cup containing 25.0 mL of water at 20. °C. Assuming that no heat is lost to the cup or the surroundings, what will the final temperature of the water be? (d_{water} = 0.997 g/mL, s_{Fe} = 0.449 J/g·°C, s_{water} = 4.184 J/g·°C) [5 points]

Dr. McCorkle

18. Calculate ΔH_{rxn} for the following reaction: [4 points]

$$2 \operatorname{Sr}(s) + \operatorname{O}_2(g) \to 2 \operatorname{SrO}(s)$$

Use the following reactions and given ΔH 's.

$$SrO(s) + CO_2(g) \rightarrow SrCO_3(s)$$
 $\Delta H = -234 \text{ kJ}$

$$C(s, graphite) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H = -394 \text{ kJ}$

$$2 \operatorname{SrCO}_3(s) \rightarrow 2 \operatorname{Sr}(s) + 2 \operatorname{C}(s, graphite) + 3 \operatorname{O}_2(g) \quad \Delta H = +2440 \text{ kJ}$$

19. Calculate ΔH°_{f} of SO₂(*g*) using the following reaction and standard enthalpies of formation: [5 points]

$$2 H_2S(g) + 3 O_2(g) \rightarrow 2 H_2O(l) + 2 SO_2(g)$$
 $\Delta H^{\circ}_{rxn} = -1124 \text{ kJ}$

Dr. McCorkle

- 20. Acetylene gas (C_2H_2) is commonly used in welding torches. When burned with pure oxygen, instead of air, it burns at about 3,500 °C!
 - a. Write a balanced equation for the combustion of acetylene (C_2H_2) in pure oxygen. (Products are gaseous due to the high temperature.) [2 points]

b. Calculate the ΔH°_{rxn} using the standard enthalpies of formation. [4 points]

c. Two pieces of iron at 23 °C have a total mass of 1250 g. What is the final temperature of the iron in Celsius if 25.5 g of acetylene is used to weld them together? Assume all of the heat from the combustion of acetylene is transferred to the iron. ($s_{Fe} = 0.449 \text{ J/g} \cdot ^{\circ}\text{C}$) [6 points]

Dr. McCorkle

21. The tiles on the space shuttle have an incredible specific heat capacity of 62.8 J/g⋅°C and were designed to withstand incredible temperatures. Let's imagine that after a successful mission, the space shuttle reenters Earth's atmosphere where its external temperature rises from −157 °C to 1650 °C generating 5.38×10¹¹ J of heat. If the average mass of each tile is 195 g, how many tiles would you need to absorb this heat? (Assume the heat is distributed evenly among the tiles.) [5 points]

Extra Credit: What Italian scientist invented the barometer? [2 points]

Formulas & Constants (you may or may not need)

1 inch = 2.54 cm (exact)	1 mile = 5280 ft ≈ 1.609 km	1 kg ≈ 2.205 lb
1 lb = 16 oz ≈ 453.6 g	1 gal = 4 qt = 8 pt ≈ 3.785 L	1 L = 1000 cm ³
K = °C + 273.15	°F = 1.8 x °C + 32	°C = (°F – 32)/1.8
1 cal = 4.184 J	1 Cal = 1000 cal	q = m x C x ΔT
Avogadro's # = 6.022x10 ²³	Molar volume = 22.4 L	$R = 0.08206 \frac{\text{L} \cdot \text{atm}}{\text{mol} \cdot \text{K}}$
$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$	$u_{\rm rms} = \sqrt{\frac{3{ m RT}}{M}}$	$KE = \frac{1}{2}mv^2 = \frac{3}{2}RT$
1 atm = 760 mmHg	1 mmHg = 1 torr	$P_{Total} = P_1 + P_2 + \dots$
$P_A = X_A \cdot P_{Total}$	PV = nRT	$\Delta E = q + w$
$w = -P\Delta V$	$q = C \times \Delta T$	$q = m \times s \times \Delta T$
$\Delta H^{\circ}_{rxn} = \Sigma[n \ \Delta H^{\circ}_{f}(products)] - \Sigma[n \ \Delta H^{\circ}$	reactants)]	R = 8.314 J/mol•K

Standard Enthalpies of Formation at 25 $^\circ C$

Substance	$\Delta H^{\circ}_{\mathbf{f}} (\mathbf{kJ/mol})$
$CH_4(g)$	-74.9
$C_2H_2(g)$	+227.4
$C_6H_6(l)$	+49.1
$CO_2(aq)$	-413.8
$CO_2(g)$	-393.5
$H_2O(g)$	-241.8
$H_2O(l)$	-285.8
$H_2S(aq)$	-39.4
$H_2S(g)$	-20.6

Scratch Page (to be handed in)