

DO NOT OPEN

UNTIL INSTRUCTED TO DO SO

CHEM 110 – Dr. McCorkle – Exam #5

While you wait, please complete the following information:

Name:

Student ID: _____

Turn off cellphones and stow them away. No headphones, mp3 players, hats, sunglasses, food, drinks, restroom breaks, graphing calculators, programmable calculators, or sharing calculators. Grade corrections for incorrectly marked or incompletely erased answers will not be made.

	GROUP																	
	1																	18
	AI																1	VIIIA
610	1																5 5	2
Ч	Т	2											13	14	15	16	17	He
	1.01	ЫA											AIII	IVA	VA	VIA	VIIA	4.00
	m	4											ъ	9	7	∞	6	10
2	: <u>-</u>	Be											ω	U	z	0	щ	Ne
	6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
	11	12											13	14	15	16	17	18
m	Na	Mg	n	4	ம	9	7	00	ი	10	11	12	AI	s:	۵.	S	U	Ar
	22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	B	IB	26.98	28.09	30.97	32.07	35.45	39.95
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	¥	Ca	Sc	Ħ	>	ა	Mn	Fe	8	Ni	CU	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.97	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
പ	Rb	S	7	Zr	ЧN	Мо	Tc	Ru	Rh	Pd	Ag	8	<u>_</u>	Sn	Sb	Te	_	Xe
	85.47	87.62	88.91	91.22	92.91	95.95	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
9	ട്	Ba	ra *	H ///	Ta	N	Re	S	F	Pt	Au	ВН	F	Рb	: 10 10	Ро	At	Rn
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
	87	88	68	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Ţ	Ra	Ac **	Rf	в	Sg	Bh	Hs	Mt	S	Rg	ຽ	Uut	Ŧ	Uup	Lv	Uus	Uuo
	(223)	(226)	(227)	(267)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
				58	59	60	61	62	63	64	65	99	67	68	69	70	71	
		anthanide	Series *	Ce	Pr	Nd	Ът	Sm	Eu	Gd	Tb	2	Ч	ш	Tm	٩Y	Lu	
			. `	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97	
				06	91	92	93	94	95	96	97	98	66	100	101	102	103	
		Actinide 5	Series **	T 1	Pa		٩N	Pu	Am	Б С	異	Ъ	Es	БП	Md	No	ر ر ۲	
				232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	

Periodic Table of the Elements

PERIOD

Multiple Choice – Choose the answer that best completes the question. Use an 815-E Scantron to record your response. [2 points each]

- 1. Which of the following statements is TRUE?
 - A) A covalent bond is formed through the transfer of electrons from one atom to another.
 - B) A pair of electrons involved in a covalent bond is sometimes referred to as a "lone pair."
 - C) It is not possible for two atoms to share more than two electrons.
 - D) Single bonds are shorter than double bonds.
 - E) In a covalent bond, the shared electrons interact with the nuclei of both the bonding atoms, thus lowering their potential energy.
- 2. Place the following in order of <u>decreasing</u> magnitude of lattice energy (largest to smallest).

	K ₂ O	Rb_2S	Li ₂ O
A) $Li_2O > K_2O > Rb_2S$			
$B) Li_2O > Rb_2S > K_2O$			
C) $Rb_2S > K_2O > Li_2O$			
$D) Rb_2S > Li_2O > K_2O$			
$E) K_2O > Li_2O > Rb_2S$			

- 3. Identify the <u>weakest</u> bond.
 - A) single covalent bond
 - B) double covalent bond
 - C) triple covalent bond
 - D) All of the above bonds are the same length

4. A reaction is exothermic when

- A) weak bonds break and strong bonds form.
- B) strong bonds break and weak bonds form.
- C) weak bonds break and weak bonds form
- D) strong bonds break and strong bonds form.
- 5. Place the following in order of <u>decreasing</u> bond length

H-F H-IA) H-F > H-Br > H-I B) H-I > H-F > H-Br C) H-I > H-Br > H-F D) H-Br > H-F > H-I E) H-F > H-I > H-Br H-Br

6. Identify the number of electron groups around a molecule with sp^2 hybridization.

A) 1	B) 2	C) 3	D) 4	E) 5
------	------	------	------	------

A molecule that is sp³d² hybridized and has a molecular geometry of square pyramidal has ______ bonding groups and ______ lone pairs around its central atom.

A) 5, 1	B) 4, 2	C) 4, 1	D) 3, 2	E) 2, 3
, ,				, ,

- 8. How many electrons are shared in a C=C bond?
 A) 1 B) 2 C) 3 D) 4 E) 6
- 9. Which of the following statements is TRUE?
 - A) The total number of molecular orbitals formed doesn't always equal the number of atomic orbitals in the set.
 - B) A bond order of 0 represents a stable chemical bond.
 - C) When two atomic orbitals come together to form two molecular orbitals, one molecular orbital will be lower in energy than the two separate atomic orbitals and one molecular orbital will be higher in energy than the separate atomic orbitals.
 - D) Electrons placed in antibonding orbitals stabilize the ion/molecule.
 - E) All of the above are true.

Calculations – Write your initials in the upper-right corner of every page that contains work. For full credit show all work and write neatly; give answers with correct significant figures and units. For calculations, place a box around your final answer.

13. According to MO theory, which molecule or ion has the highest bond order? (Show all work.) [6 points]

 O_2, O_2^{-}, O_2^{2-}

a. Which has the highest bond energy? Explain. [2 points]

b. Which has the longest bond length? Explain. [2 points]

- 14. Consider the ion IF_4^+ :
 - a. Draw the Lewis structure, including any resonance structures: [2 points]

- b. Assign formal charges to each atom in the structure(s) above: [2]
- c. Electron geometry? [2]
- d. Molecular geometry? [2]
- e. Draw IF_4^+ three-dimensionally using wedge notation AND label all bond angles: [4]

f. Is the molecule polar or nonpolar? Explain. [2]

- 15. Consider the molecule PO_2^- :
 - a. Draw the Lewis structure, including any resonance structures: [2 points]

- b. Assign formal charges to each atom in the structure(s) above: [2]
- c. Electron geometry? [2]
- d. Molecular geometry? [2]
- e. Draw PO_2^{-} three-dimensionally using wedge notation AND label all bond angles: [4]

e. Is the molecule polar or nonpolar? Explain. [2]

16. Consider the following molecule:

Use valence bond theory to describe the bonding scheme, including the orbitals involved in both σ and π bonds, as well as which orbitals contain any lone pairs. The hydrogen and nitrogen atoms have been numbered for clarity. [8 points]

Dr. McCorkle

17. Consider the following molecule:

Describe the following: [2 points each]

1st (Left) C Electron Geometry: 1st (Left) C Molecular Geometry:

2nd C Electron Geometry:

N Electron Geometry:

O–C–N Bond Angle:

2nd C Molecular Geometry:

N Molecular Geometry:

H–N–H Bond Angle

18. Describe metallic bonding. Explain why metallic solids are good electrical conductors <u>and</u> why they are good thermal conductors. [6 points]

19. Draw an MO diagram for OF^+ (use the energy ordering of O_2 and F_2). [4 points]

a. Calculate the bond order. [2 points]

- b. Is the molecule predicted to be stable or unstable? Explain. [2 points]
- c. Is the molecule diamagnetic or paramagnetic? [2 points]

- 20. Use bond energies to calculate ΔH_{rxn} for the following reactions:
 - a. $2 \operatorname{NOCl}(g) \rightarrow 2 \operatorname{NO}(g) + \operatorname{Cl}_2(g)$ [6 points]

b. $C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)$ [6 points]

Extra Credit: Linus Pauling won the Nobel Prize twice in two different fields. What were they? [2 points]

TABLE 9.3	verage Bond Ener	rgies			
Bond	Bond Energy (kJ/mol)	Bond	Bond Energy (kJ/mol)	Bond	Bond Energy (kJ/mol)
н—н	436	N — N	163	Br-F	237
н-с	414	N=N	418	Br-Cl	218
H — N	389	N=N	946	Br-Br	193
H-0	464	N-0	222	I-CI	208
H-S	368	N=0	590	I — Br	175
H-F	565	N - F	272	1-1	151
H — CI	431	N — CI	200	Si — H	323
H — Br	364	N — Br	243	Si — Si	226
H-I	297	N-1	159	Si — C	301
c-c	347	0-0	142	s-0	265
c=c	611	0=0	498	Si=0	368
c=c	837	0-F	190	S= 0	523
C — N	305	0 — CI	203	Si — Cl	464
C=N	615	0-1	234	S=S	418
C=N	891	F-F	159	S-F	327
C-0	360	CI-F	253	S-CI	253
C=0	736*	CI — CI	243	S-Br	218
C=0	1072			s—s	266
C — CI	339				

*799 in CO2 .

TABLE 9.4	Average Bond Leng	ths			
Bond	Bond Length (pm)	Bond	Bond Length (pm)	Bond	Bond Length (pm)
Н—Н	74	C-C	154	N — N	145
H-C	110	C = C	134	N = N	123
H N	100	C≡C	120	N=N	110
H-0	97	C — N	147	N-0	136
H—S	132	C = N	128	N=0	120
H — F	92	C≡N	116	0-0	145
H — CI	127	C-0	143	0=0	121
H — Br	141	C=0	120	F-F	143
H—I	161	C — CI	178	CI — CI	199
				Br — Br	228
				1-1	266

Electronegativity

Decre																1 H
9 F	8 0	7 N	6 C	5 B											4 Be	3 Li
4.0	3.5	3.0	2.5	2.0						-					1.5	1.0
17 Cl	16 S	15 P	14 Si	13 Al				-	sing —	Increa					12 Mg	11 Na
3.0	2.5	2.1	1.8	1.5											1.2	0.9
35 Br	34 Se	33 As	32 Ge	31 Ga	30 Zn	29 Cu	28 Ni	27 Co	26 Fe	25 Mn	24 Cr	23 V	22 Ti	21 Sc	20 Ca	19 K
2.8	2.4	2.0	1.8	1.6	1.6	1.9	1.9	1.9	1.8	1.5	1.6	1.6	1.5	1.3	1.0	0.8
53 1	52 Te	51 Sb	50 Sn	49 In	48 Cd	47 Ag	46 Pd	45 Rh	44 Ru	43 Tc	42 Mo	41 Nb	40 Zr	39 Y	38 Sr	37 Rb
2.5	2.1	1.9	1.8	1.7	1.7	1.9	2.2	2.2	2.2	1.9	1.8	1.6	1.4	1.2	1.0	0.8
85 At	84 Po	83 Bi	82 Pb	81 TI	80 Hg	79 Au	78 Pt	77 Ir	76 Os	75 Re	74 W	73 Ta	72 Hf	57 La	56 Ba	55 Cs
2.2	2.0	1.9	1.9	1.8	1.9	2.4	2.2	2.2	2.2	1.9	1.7	1.5	1.3	1.1	0.9	0.7
emen	of the El	tivities o	tronega	Elec										89 Ac	88 Ra	87 Fr
														1.1	0.9	0.7

Scratch Page (to be handed in)