

DO NOT OPEN

UNTIL INSTRUCTED TO DO SO

CHEM 111 – Dr. McCorkle – Exam #1

While you wait, please complete the following information:

Name:			
Student ID:			

Turn off cellphones and stow them away. No headphones, mp3 players, hats, sunglasses, food, drinks, restroom breaks, graphing calculators, programmable calculators, or sharing calculators.

Periodic Table of the Elements

			1			2			m		a	OIA 4	ЬE		5			9			7	
GROUP 1	Ы	Н	I	1.01	æ	/20a	6.94	11	10%	22.99	19	1	39.10	37	Urgos	85.47	55		132.91	87	上	(223)
_							-	12														
				i					ო	IIIB	21	SS	44.96	39	>	88.91	57	* E	138.91	68	Ac **	(227)
									4	IVB	22	F	47.88	40	Zr	91.22	77	士	178.49	104	¥	(267)
									2	VB	23	>	50.94	41	QN 9	92.91	73	Та	180.95	105	음	(268)
									9	VIB	24	ర	52.00	42	Мо	95.95	74	>	183.85	106	Sg	(271)
									7	VIIB	25	Δn	54.94	43	Tc	(86)	75	Re	186.21	107	Bh	(270)
									ø	VIIIB	56	Fe	55.85	44	Ru	101.07	9/	So	190.23	108	Hs	(277)
									თ	VIIIB	27	ც	58.93	45	R	102.91	77	<u>-</u>	192.22	109	Μţ	(276)
									10	VIIIB	28	ż	58.69	46	Pd	106.42	78	7	195.08	110	<u>د</u>	(281)
									11	IB	59	J	63.55	47	Ag	107.87	79	Αu	196.97	111	Rg	(280)
									12	IB	30	Zn	62.39	48	ප	112.41	80	Ξ	200.59	112	გ	(285)
			13	HIA	5	В	10.81	13	A	26.98	31	Ga	69.72	49	드	114.82	81	F	204.38	113	Uut	(284)
			14	IVA	9	ပ	12.01	14	Σi	28.09	32	Ge	72.61	20	۲S	118.71	82	Pp	207.2	114	正	(588)
			15	٧A	7	Z	14.01	15	۵	30.97	33	As	74.92	51	S	121.75	83	ä	208.98	115	Uup	(288)
			16	VIA	8	0	16.00	16	S	32.07	34	Se	78.97	52	o	127.60	84	Po	(505)	116		(293)
	2		17	VIIA	6	щ	19.00	17	ਹ	35.45	35	B	79.90	53	_	126.90	85	At	(210)	117	Uus	(584)
18	VIIIA	2	Не	4.00	10	Ne	20.18	18	Ar	39.95	36	λ	83.80	54	Xe	131.29	98	Rn	(222)	118	Ono	(294)

Lanthanide Series * Ce Pr Nd Pm Sm Eu Gd 140.12 140.91 144.24 (145) 150.36 151.96 157.25 90 91 92 93 94 95 96 Anticide Conice *** Th Po 11 Na Po An	Pm (145)		7 (1)	0	/9		מ		Τ/
140.12 140.91 144.24 (145) 150.36 151.96 90 91 92 93 94 95 Th	(145)		3	욘	δ	웃		Т		ב
90 91 92 93 94 95	00	www.	157.25	158.93	162.50	164.93	1000000	168.93		174.97
	C C		96	26	86	66	100	101	102	103
	ν Ω		ق	쑮	ᠸ	Es		Md		ב
(244) (243)	(237)	- 0	(247)	(247)	(251)	(252)	- 1	(258)	- 6	(262)

2

Multiple Choice – Choose the answer that best completes the question. Use an 815-E Scantron to record your response. [2 points each]

2.

4.

For the molecules 1-4, would you expect greater solubility in:

A) water

B) benzene (C_6H_6) ?

1. H_2N OH A

 $HO \qquad C \qquad OH \qquad A$

 CH_3 H_3C CH_3 B

5. Which substance would you expect to be the most soluble in water?

A) CH₃CH₂CH₃

B) CH₃CH(OH)CH₃

C) HOCH₂CH₂OH

D) HOCH₂CH₂CH₂OH

E) CH₃CH₂CH₂COOH

6. Which aqueous solution would you expect to produce the lowest freezing point? Assume all are ideal, non-volatile, 1.0 L solutions.

A) 0.750 m KCl

B) 1.200 m CH₃CH₂CH₃

C) 0.600 m Li₂SO₄

D) 0.400 m Na₃PO₄

E) 0.800 m HOCH₂CH₂OH

- 7. When lithium iodide dissolves in water the solution becomes hotter. Which of the following is NOT true about the solution?
 - A) The solution is exothermic.
 - B) The lattice energy is smaller in magnitude than the heat of hydration.
 - C) The solution forms because the system tends towards greater entropy.
 - D) The solution forms because the system tends towards greater energy.
 - E) The ΔH_{mix} must be larger in magnitude than the sum of $\Delta H_{solvent}$ and ΔH_{solute} .

8.	Solutions h	naving	osmotic	pressure	less	than	those	of bod	ily	fluids	are c	called	
		\mathcal{C}		1					-				

A) isosmotic

B) hyposmotic

C) hyperosmotic

D) hemosmotic

- E) perosmotic
- 9. The Tyndall effect is due to:
 - A) blockage of a beam of light an aerosol
 - B) bending of light by an emulsion
 - C) light passing through a solution
 - D) scattering of a beam of light by a colloid
 - E) light refracting through a suspension
- 10. Consider the reaction: $2 C_4H_{10}(g) + 13 O_2(g) \rightarrow 8 CO_2(g) + 10 H_2O(g)$

If the rate of loss of O_2 is 0.32 M/s, what is rate of formation of CO_2 ?

A) 2.6 *M*/s

B) **0.20** *M*/s

C) 0.52 M/s

D) 0.025 *M*/s

E) 0.32 *M*/s

Calculations – Write your initials in the upper-right corner of every page that contains work. For full credit show all work and write neatly; give answers with correct significant figures and units. Place a box around your final answer.

- 11. Ascorbic acid (vitamin C, C₆H₈O₆) is a water-soluble vitamin. A solution containing 80.5 g of ascorbic acid dissolved in 210.0 g of water has a density of 1.22 g/mL at 55°C. Calculate the following quantities for ascorbic acid in this solution: [3 points each]
 - a. mass percentage

mass
$$\% = \frac{80.5 \text{ g}}{80.5 \text{ g} + 210.0 \text{ g}} \times 100 = 27.7\%$$

b. mole fraction

$$n_{ascorbic \ acid} = 80.5 \ g \times \frac{1 \ mol}{176.14 \ g} = 0.45 \underline{7}0 \ mol$$

$$n_{water} = 210.0 \text{ g} \times \frac{1 \text{ mol}}{18.02 \text{ g}} = 11.653 \text{ mol}$$

$$\chi_{ascorbic \ acid} = \frac{0.45\underline{7}0 \ mol}{0.45\underline{7}0 \ mol + 11.6\underline{5}3 \ mol} = 0.0377$$

c. molality

$$210.0 \ g \ \times \frac{1 \ kg}{10^3 \ g} = 0.2100 \ kg$$

$$molality = \frac{0.45\underline{70~mol}}{0.2100~kg} = 2.\,18~\underline{m}$$

d. molarity

$$80.\,5\,g + 210.\,0\,g = 290.\,5\,g\,\times \frac{1\,\text{mL}}{1.22\,g}\,\times \frac{10^{-3}\,\text{L}}{1\,\text{mL}} = 0.\,23\underline{8}1\,\text{L}$$

molarity =
$$\frac{0.4570 \text{ mol}}{0.2381 \text{ L}}$$
 = 1.92 M

12. Nitric acid is usually purchased in a concentrated form that is 70.3% HNO₃ by mass and has a density of 1.41 g/mL. How many mL of concentrated solution would you take to prepare 1.50 L of 0.125 *M* HNO₃ by mixing with water? [4]

$$1.\,50~L \times \frac{_{0.125~mol~HNO_3}}{_{1~L}} \times \frac{_{63.02~g~HNO_3}}{_{1~mol~HNO_3}} \times \frac{_{100~g~solution}}{_{70.3~g~HNO_3}} \times \frac{_{1~mL}}{_{1.41~g}} = 11.\,9~mL$$

13. Calculate the vapor pressure in <u>atm</u> of a solution containing 25.1 g of glycerin (C₃H₈O₃) in 115 mL of water at 30.0 °C. The vapor pressure of pure water at this temperature is 31.8 torr. Assume that glycerin is not volatile and dissolves molecularly (i.e., it is not ionic); use a density of 1.00 g/mL for the water. [5]

$$n_{glycerin} = 25.1 \text{ g} \times \frac{1 \text{ mol}}{92.11 \text{ g}} = 0.2725 \text{ mol}$$

$$n_{water} = 115 \; mL \; \times \frac{\text{1.00 g}}{\text{1 mL}} \; \times \frac{\text{1 mol}}{\text{18.02 g}} \; = 6.3\underline{8}1 \; mol$$

$$\chi_{water} = \frac{6.3\underline{8}1 \text{ mol}}{6.3\underline{8}1 \text{ mol} + 0.27\underline{2}5 \text{ mol}} = 0.9590$$

$$P_{water} = \chi_{water} \cdot P_{water}^o = 0.9590 \times 31.8 \text{ torr} \times \frac{1 \text{ atm}}{760 \text{ torr}}$$
 $P_{water} = 0.0401 \text{ atm}$

14. An aqueous solution containing 15.6 g of an unknown molecular (nonelectrolyte) compound in 109.5 g of water was found to have a freezing point of -1.6 °C. Calculate the molar mass of the unknown compound. ($K_f = 1.86$ °C/m) [3]

$$\Delta \mathbf{T}_f = \underline{\mathbf{m}} \times K_f$$
 $\underline{\mathbf{m}} = \frac{\Delta \mathbf{T}_f}{K_f} = \frac{-1.6 \,^{\circ} \mathrm{C}}{1.86 \,^{\circ} \underline{m}} = \mathbf{0}.8\underline{6}\mathbf{0} \,\underline{\mathbf{m}}$

109.5 g H₂0 ×
$$\frac{1 \text{ kg}}{10^3 \text{ g}}$$
 × $\frac{0.8\underline{60} \text{ mol}}{1 \text{ kg H}_20}$ = 0.09 $\underline{4}$ 17 mol

$$MM = \frac{15.6 \text{ g}}{0.09417 \text{ mol}} = 170 \text{ g/mol}$$

15. The decomposition of dinitrogen pentoxide $(N_2O_5 \rightarrow N_2O_3 + O_2)$ obeys the rate-law expression, Rate = 0.080 min⁻¹[N₂O₅]. If the initial concentration of N₂O₅ is 0.30 M, what is the concentration after 2.6 minutes? [3]

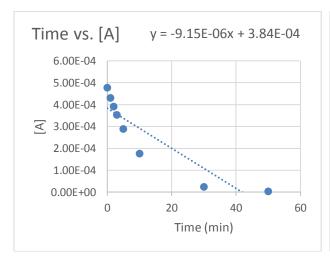
$$ln[A]_t = -kt + ln[A]_0$$
 $ln[A]_t = -0.080 \text{ min}^{-1} \times 2.6 \text{ min} + ln(0.30)$
 $ln[A]_t = -1.41$
 $[A]_t = e^{-1.41} = 0.24 M$

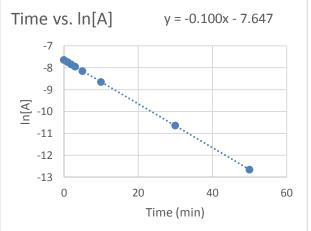
16. Consider the reaction: $2B \rightarrow C + 3D$. In one experiment it was found that at 27 °C the rate constant is $0.134 \, M^{-1} \cdot \text{s}^{-1}$. A second experiment showed that at 177 °C, the rate constant was $0.569 \, M^{-1} \cdot \text{s}^{-1}$. Determine the activation energy for the reaction in joules. [3]

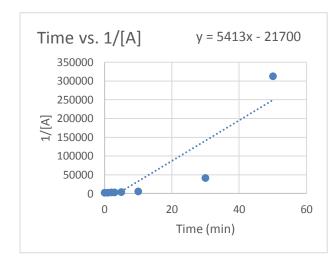
$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

$$\ln \left(\frac{0.569 \ M^{-1} \cdot s^{-1}}{0.134 \ M^{-1} \cdot s^{-1}} \right) = \frac{E_a}{8.314 \ \frac{J}{\text{mol} \cdot K}} \left(\frac{1}{300. \ \text{K}} - \frac{1}{450. \ \text{K}} \right)$$

$$1.446 = \frac{E_a}{8.314 \ \frac{J}{\text{mol} \cdot K}} \left(0.001111 \ \text{K}^{-1} \right)$$


$$E_a = 1.08 \times 10^4 \ \text{J}$$


17. Consider the following reaction:


$$A(aq) \rightarrow B(aq) + C(aq)$$

The concentration of A was measured over time and the following data collected.

Time (min)	0.00	1.00	2.00	3.00	5.00	10.00	30.00	50.00
[A] (M)	4.77×10^{-4}	4.31×10^{-4}	3.91×10^{-4}	3.53×10^{-4}	2.89×10^{-4}	1.76×10^{-4}	2.40×10^{-5}	3.20×10^{-6}

a. Determine the rate constant: [2]

time vs. ln[A] gives a straight line so reaction is first — order in A

$$slope = -k$$

slope =
$$-(-0.100 \text{ min}^{-1})$$

$$slope = 0.100 min^{-1}$$

b. Write the rate law: [2]

Rate =
$$k[A]^1$$
 or $0.100 \text{ min}^{-1}[A]^1$

18. The following data were measured for the reaction:

$$BF_3(g) + NH_3(g) \rightarrow F_3BNH_3(g)$$

Experiment	[BF ₃] (M)	[NH ₃] (M)	Initial rate (M·s ⁻¹)
1	0.250	0.250	0.2130
2	0.250	0.125	0.1065
3	0.200	0.100	0.0682
4	0.350	0.100	0.1193
5	0.175	0.100	0.0596

a. Determine the rate law for the reaction. [4]

$$\begin{pmatrix} \frac{Rate_1}{Rate_2} \end{pmatrix} = \begin{pmatrix} \frac{k_{\frac{1}{2}}[BF_{\frac{3}}]^{\frac{m}{2}}[NH_3]^n}{k_{\frac{1}{2}}[BF_{\frac{3}}]^{\frac{m}{2}}[NH_3]^n} \end{pmatrix} \qquad \begin{pmatrix} \frac{Rate_4}{Rate_3} \end{pmatrix} = \begin{pmatrix} \frac{k_{\frac{4}{2}}[BF_3]^m[NH_3]^n}{k_{\frac{3}{2}}[BF_3]^m[NH_3]^n} \end{pmatrix} \\
\begin{pmatrix} \frac{0.2130 \, M \cdot s^{-1}}{0.1065 \, M \cdot s^{-1}} \end{pmatrix} = \begin{pmatrix} \frac{0.250 \, M}{0.125 \, M} \end{pmatrix}^m \qquad \begin{pmatrix} \frac{0.1193 \, M \cdot s^{-1}}{0.0682 \, M \cdot s^{-1}} \end{pmatrix} = \begin{pmatrix} \frac{0.350 \, M}{0.200 \, M} \end{pmatrix}^n \\
(2) = (2)^m \qquad (1.75) = (1.75)^n \\
m = 1 \qquad n = 1$$

$$Rate = k[BF_3]^1[NH_3]^1$$

b. What is the overall order of the reaction? [2]

overall order
$$= 1 + 1 = 2$$

c. Determine the rate constant. [3]

Rate =
$$k[BF_3]^1[NH_3]^1$$

$$k = \frac{\text{Rate}}{[BF_3]^1[NH_3]^1} = \frac{0.2130 \, M \cdot s^{-1}}{(0.250 \, M)^1(0.250 \, M)^1} = 3.41 \, M^{-1} \cdot s^{-1}$$

19. *Challenge Question:* For the reaction $Cl_2 + CO \rightleftharpoons Cl_2CO$, the following three-step mechanism has been proposed:

$$\begin{array}{lll} \text{step 1} & \text{Cl}_2 \rightleftharpoons 2 \, \text{Cl} & \text{(fast)} \\ \text{step 2} & \text{Cl} + \text{CO} \rightleftharpoons \text{ClCO} & \text{(fast)} \\ \text{step 3} & \text{ClCO} + \text{Cl}_2 \rightarrow \text{Cl}_2 \text{CO} + \text{Cl} & \text{(slow)} \end{array}$$

(Hint: Remember that orders do not have to be whole numbers.)

a) Identify the intermediates, if any, in the mechanism. [2]

Both Cl and ClCO could be considered intermediates (although technically Cl is catalyst)

b) What is the rate law expression for the overall reaction? [5]

Start with the slow step: Rate₃ = $k_3[ClCO]^1[Cl_2]^1$

Have to substitute for the intermediate, CICO

$$Rate_2 = Rate_{-2}$$

$$k_2[\text{Cl}]^1[\text{CO}]^1 = k_{-2}[\text{ClCO}]^1$$
 $\frac{k_2}{k_{-2}}[\text{Cl}]^1[\text{CO}]^1 = [\text{ClCO}]^1$

Rate₃ =
$$\frac{k_3 \cdot k_2}{k_{-2}} [Cl]^1 [CO]^1 [Cl_2]^1$$

$$Rate_1 = Rate_{-1}$$

$$k_1[\text{Cl}_2]^1 = k_{-1}[\text{Cl}]^2$$
 $\frac{k_1}{k_{-1}}[\text{Cl}_2]^{1/2} = [\text{Cl}]$

$$Rate_3 = \frac{k_3.k_2.k_1}{k_{-2}.k_{-1}} [Cl_2]^{1/2} [CO]^1 [Cl_2]^1$$

Rate =
$$k[Cl_2]^{3/2}[CO]^1$$

Extra Credit: When molecules with hydrophilic heads and long hydrophobic tails are placed in water they often cluster together in spheres. What are these spheres called? [2 points]

micelles

1 V = 1 J/C

Formulas & Constants

$M = \frac{\text{mol solute}}{\text{liters solution}}$	$m = \frac{\text{mol solute}}{\text{kg solvent}}$	$\chi_A = \frac{\text{mol } A}{\text{total moles}}$
$P_A = \chi_A \cdot P_A^o$	$R = 0.08206 \frac{\text{L·atm}}{\text{mol·K}}$	$R = 8.314 \frac{J}{\text{mol} \cdot \text{K}}$
$\Delta T_f = \underline{m} \cdot K_f$	$\Delta \mathbf{T}_{b} = \underline{m} \cdot \mathbf{K}_{b}$	$\Pi = \underline{\mathbf{M}}\mathbf{R}\mathbf{T}$
$\Delta \mathbf{T}_{\mathbf{f}} = i \cdot \underline{m} \cdot \mathbf{K}_{f}$	$\Delta T_b = i \cdot \underline{m} \cdot K_b$	$\Pi = i \cdot \underline{\mathbf{M}} \mathbf{R} \mathbf{T}$
$K = {^{\circ}C} + 273.15$	1 atm = 760 torr = 760 mmHg	$S_{gas} = k_H \cdot Pgas$
$\Delta H_{sol'n} = \Delta H_{hydration} - \Delta H_{lattice}$	$f = e^{-Ea/RT}$	$k = Ae^{-Ea/RT}$
$\ln\frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$	$\ln k = -\frac{E_a}{R} \left(\frac{1}{T}\right) + \ln A$	
$K_p = K_c(\mathrm{RT})^{\Delta \mathrm{n}}$	$K_w = 1.0 \times 10^{-14}$	$K_a \times K_b = K_w$
$K_w = [\mathrm{H}_3\mathrm{O}^+][\mathrm{OH}^-]$	$pH = pK_a + log \frac{[base]}{[acid]}$	$pH = -log[H_3O^+]$
$pOH = -log[OH^{-}]$	$\Delta G = \Delta G^{\circ} + RT \ln Q$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$K = e^{-\Delta G^{\circ}/RT}$	$\Delta G^{\circ} = -nFE^{\circ}$	$F = 96,485 \text{ J/V} \cdot \text{mol}$
E° cell = E° (cathode) – E° (anode)	$E = E^{\circ} - (0.0592/n) \log Q$	$E = E^{\circ} - (RT/nF) \ln Q$

Order in [A]	Rate Law	Integrated Form, y = mx + b	Straight Line Plot	Half-Life t _{1/2}		
zero-order $(n=0)$	$rate = k [A]^0 = k$	$[\mathbf{A}]_{t} = -kt + [\mathbf{A}]_{0}$	$[A]_t$ vs. t	$t_{\frac{1}{2}} = \frac{[A]_0}{2k}$		
first-order (n = 1)	$rate = k [A]^1$	$\ln[A]_t = -kt + \ln[A]_0$	ln[A] _t vs. t	$t_{\frac{1}{2}} = \frac{\ln 2}{k} = \frac{0.693}{k}$		
second- order (n = 2)	$rate = k [A]^2$	$\frac{1}{[A]_{t}} = kt + \frac{1}{[A]_{0}}$	$\frac{1}{[A]_t}$ vs. t	$t_{\frac{1}{2}} = \frac{1}{k[A]_0}$		

Scratch Page (to be handed in)