

DO NOT OPEN

UNTIL INSTRUCTED TO DO SO

CHEM 111 - Dr. McCorkle - Exam #3A

While you wait, please complete the following information

Name:

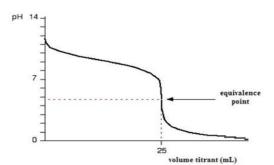
Student ID:		

Turn off cellphones and stow them away. No headphones, mp3 players, hats, sunglasses, food, drinks, restroom breaks, graphing calculators, programmable calculators, or sharing calculators. Grade corrections for incorrectly marked or incompletely erased answers will not be made.

Periodic Table of the Elements

18 VIIIA	2	Ŧ	4.00	10	Ne	20.18	18	Ar	39.95	36	잣	83.80	54	Xe	131.29	98	R	(222)	118	Ono	(594)
		17	VIIA	6	ш,	19.00	17	ਹ	35.45	35	Br	79.90	53	-	126.90	85	At	(210)	117	Ous	(294)
		16	VIA	8	0	16.00	16	S	32.07	34	Se	78.97	52	<u>e</u>	127.60	84	Ъ	(506)	116		(293)
		15	VA	7	Z	14.01	15	Δ.	30.97	33	As	74.92	51	Sb	121.75	83	æ	208.98	115	Uup	(288)
		14	IVA	9	U	12.01	14	Σ	28.09	32	Ge	72.61	20	S	118.71	82	Pb	207.2	114	ᄑ	(589)
		13	HIA	2	ω	10.81	13	A	26.98	31	Ga	69.72	49	드	114.82	81	F	204.38	113	Uut	(284)
								12	IB	30	Zu	62.39	48	ප	112.41	80	품	200.59	112	ნ	(285)
								11	IB	59	3	63.55	47	Ag	107.87	79	Au	196.97	111	Rg	(280)
								10	VIIIB	28	Ë	58.69	46	Pd	106.42	78	Pt	195.08	110	۵	(281)
								თ	VIIIB	27	ප	58.93	45	R	102.91	77	<u>_</u>	192.22	109	Ĭ	(276)
								∞	VIIIB	56	Fe	55.85	44	Ru	101.07	76	Os	190.23	108	Hs	(277)
								7	VIIB	25	Mn	54.94	43	<u>ا</u> ر	(86)	75	Re	186.21	107	뮴	(270)
								9	VIB	24	ბ	52.00	42	Мо	95.95	74	≶	183.85	106	Sg	(271)
								5	VB	23	>	50.94	41	NP	92.91	73	Та	180.95	105	g G	(268)
								4	IVB	22	ï	47.88	40	Zr	91.22	72	生	178.49	104	 ₽	(267)
								ĸ	IIIB	21	S	44.96	39	>	88.91	57	* 'e	138.91	68	Ac **	(227)
		7	IIA	4	Be	9.01	12	Mg	24.31	20	ဌ	40.08	38	S	87.62	56	Ba	137.33	88	Ra	(526)
GROUP 1 IA	П	I	1.01	ĸ	Ή	6.94	11	Na	22.99	19	¥	39.10	37	Rb	85.47	55	ర	132.91	87	占	(223)
		-			7			m			4	-		2			9			7	
										a(BIC	bĿ									

		29	9	61	62	63	64	65	99	29	89	69	70	71
Lanthanide Series *		Pr	Nd	Pm	Sm	Eu	P.S	1p	ρ	웃	Щ	T	Υb	
	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
	06	91	95	93	94	92	96	26	86	66	100	101	102	103
Actinide Series **	£	Pa	⊃	Np	Pu	Am	Cm	番	ರ	Es	F	Md	No	۲
	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(222)	(257)	(258)	(528)	(292)
•5												2		


Multiple Choice – Choose the answer that best completes the question. Use an 815-E Scantron to record your response. [2 points each]

- 1. Which of the following combinations is the best choice for creating a buffer solution with a pH of 3.50?
 - A) HNO₂/KNO₂
- B) HCl/NaCl

C) NH₃/NH₄F

- D) HCHO₂/NaC₂H₃O₂
- E) HClO₂/NaClO₂
- 2. If ΔS is positive and ΔH is positive, when is the reaction spontaneous?
 - A) high temperatures
- B) low temperatures
- C) all temperatures

- D) never
- 3. Which of the following is more soluble in acidic solution than in pure water?
 - A) AgCl
- B) MgCO₃
- C) CaBr₂
- D) $Ba(NO_3)_2$
- E) NaI
- 4. If the p*K*_a of HCHO₂ is 3.74 and the pH of an HCHO₂/NaCHO₂ solution is 3.11, which of the following is true?
 - A) [HCHO₂] < [NaCHO₂]
 - B) $[HCHO_2] = [NaCHO_2]$
 - C) $[HCHO_2] \ll [NaCHO_2]$
 - D) $[HCHO_2] > [NaCHO_2]$
 - E) It is not possible to make a buffer of this pH from HCHO2 and NaCHO2.
- 5. The plot at right illustrates which type of titration?

- A) a weak acid titrated with a weak base
- B) a weak acid titrated with a strong base
- C) a strong base titrated with a weak acid
- D) a weak base titrated with a strong acid
- E) a weak base titrated with a weak acid
- 6. Without doing any calculations, which of the following processes would you expect to be spontaneous?
 - A) $2 \text{ KCl}(s) + 3 \text{ O}_2(g) \rightarrow 2 \text{ KClO}_3(s)$
 - B) $2 \text{ H}_2\text{S}(g) + 3 \text{ O}_2(g) \rightarrow 2 \text{ H}_2\text{O}(g) + 2 \text{ SO}_2(g)$
 - C) $HCl(g) + NH_3(g) \rightarrow NH_4Cl(g)$
 - D) $NaCl(s) \rightarrow Na(s) + \frac{1}{2}Cl_2(g)$
 - E) $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$

E) is very slow

7.	The Law the universe incr		ynamics states that f	or any spontaneous	s process, the entropy of
	A) Zero	B) First	C) Second	D) Third	E) Fourth
8.	A process is always	ays spontaneo	ous under which cor	ditions?	
	 A) positive ΔS a B) negative ΔS a C) positive ΔS a D) negative ΔS a E) no process is 	and positive Δ and negative Δ and negative Δ	ΔH ΔH ΔH		
9.	Place the followi	ing in increasi	ng order of molar e	ntropy at 298 K: N	O, CO, SO
	A) NO < CO < S	SO			
	B) $SO < CO < N$	1O			
	C) SO < NO < 0	CO			
	D) CO < SO < N	1O			
	E) CO < NO < S	SO			
10	. A reaction that is	s spontaneous	as written	·	
	A) has an equilibB) is also spontaC) will proceed	aneous in the 1		left	
	D) is very rapid				

Calculations – Write your initials in the upper-right corner of every page that contains work. For full credit show all work and write neatly; give answers with correct significant figures and units. Place a box around your final answer.

11. Use the Henderson–Hasselbalch equation to calculate the pH of a solution that is 10.0 g of $HC_2H_3O_2$ and 12.0 g of $NaC_2H_3O_2$ in 150.0 mL of solution. ($K_a = 1.8 \times 10^{-5}$) [4 points]

12. What mass of sodium benzoate (NaC₇H₅O₂) should be added to 180.0 mL of a 0.16 *M* benzoic acid (HC₇H₅O₂) solution in order to obtain a buffer with a pH of 4.25? $(K_a = 6.5 \times 10^{-5})$ [5]

13. Calculate the molar solubility of calcium hydroxide in a solution buffered at pH = 9.00. $(K_{sp} = 4.68 \times 10^{-6})$ [5]

14. Will a precipitate of MgF₂ form when 300. mL of 1.1×10^3 M MgCl₂ solution are added to 500. mL of 1.2×10^3 M NaF? (MgF₂, $K_{\rm sp} = 6.9 \times 10^9$) [5]

15. A 0.327 g sample of an unknown monoprotic acid was titrated with 0.127 *M* KOH. The equivalence point was determined to be 30.5 mL. What is the molar mass of the unknown acid? [3]

16. 250.0 mL of 1.3×10^{-4} M Zn(NO₃)₂ is mixed with 175.0 mL of 0.150 M NH₃. After the solution reaches equilibrium, what concentration of Zn²⁺(aq) remains? ([Zn(NH₃)₄]²⁺, $K_f = 2.8\times10^9$) [7]

17. Calculate the pH after 0.010 mol HCl is added to 225.0 mL of a buffer solution that is 0.10 M ethylamine and 0.15 M ethylammonium nitrate? (ethylamine, $K_b = 6.4 \times 10^{-4}$) [7]

18. Consider the reaction: $2 \text{ Hg}(g) + O_2(g) \rightarrow 2 \text{ HgO}(s)$ $\Delta G^{\circ} = -180.8 \text{ kJ}$

Calculate ΔG_{rxn} at 25°C under these conditions: $P_{\text{Hg}} = 0.025$ atm, $P_{\text{O2}} = 0.037$ atm [5]

- 19. Consider the titration of 30.00 mL of 0.0800 M acetic acid (HC₂H₃O₂, $K_a = 1.8 \times 10^{-5}$) with 0.1600 M NaOH. Calculate the pH of the resulting solution after the following volumes of NaOH have been added. [15]
 - a) 10.00 mL

b) 15.00 mL

c) 20.00 mL

20. Using the data provided, calculate ΔH° , ΔS° and ΔG° at 298K for the following reaction. Also, show that $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$. [8]

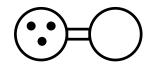
$$3 \text{ NO}_2(g) + \text{H}_2\text{O}(l) \rightarrow 2 \text{ HNO}_3(aq) + \text{NO}(g)$$

Substance	ΔH° _f (kJ/mol)	ΔG°_{f} (kJ/mol)	S [◦] (J/mol·K)
$H_2O(l)$	-285.8	-237.1	70.0
$HNO_3(aq)$	-207	-110.9	146
NO(g)	91.3	87.6	210.8
$NO_2(g)$	33.2	51.3	240.1

21. Challenge Question: Consider the following reaction: $2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$

Using the information below, solve for the ΔH°_{f} of SO₃. [10 points]

$$S(s, rhombic) + O_2(g) \rightarrow SO_2(g)$$


$$\Delta G^{\circ}_{\text{rxn}} = -295.4 \text{ kJ}$$

$$S(s) + 3/2 O_2(g) \rightarrow SO_3(g)$$

$$\Delta G^{\circ}_{\rm rxn} = -395.8 \text{ kJ}$$

Substance	ΔH° _f (kJ/mol)	S [◦] (J/mol·K)
$O_2(g)$	0	205.2
S(s, rhombic)	0	32.1
$SO_2(g)$	-296.8	248.2
$SO_3(g)$???	256.8

Extra Credit: Consider two flasks that are joined together, one evacuated and one containing 3 molecules of a gas. When the flasks are allowed to mix, how many microstates are possible? [2 points]

Scratch Page (to be handed in)

Formulas & Constants

$M = \frac{\text{mol solute}}{\text{liters solution}}$	$m = \frac{\text{mol solute}}{\text{kg solvent}}$	$\chi_A = \frac{\text{mol } A}{\text{total moles}}$
$P_A = \chi_A \cdot P_A^o$	$R = 0.08206 \frac{\text{L-atm}}{\text{mol} \cdot \text{K}}$	$R = 8.314 \frac{J}{\text{mol} \cdot \text{K}}$
$\Delta \mathbf{T}_{\mathbf{f}} = \underline{m} \cdot \mathbf{K}_{\mathbf{f}}$	$\Delta \mathbf{T}_{b} = \underline{m} \cdot \mathbf{K}_{b}$	$\Pi = \underline{\mathbf{M}}\mathbf{R}\mathbf{T}$
$\Delta \mathrm{T_f} = i \cdot \underline{m} \cdot \mathrm{K}_f$	$\Delta \mathbf{T}_{\mathbf{b}} = i \cdot \underline{m} \cdot \mathbf{K}_{b}$	$\Pi = i \cdot \underline{\mathbf{M}} \mathbf{R} \mathbf{T}$
$K = {}^{\circ}C + 273.15$	1 atm = 760 torr = 760 mmHg	$S_{gas} = k_H \cdot P_{gas}$
$\Delta H_{sol`n} = \Delta H_{hydration} - \Delta H_{lattice}$	$f = e^{-Ea/RT}$	$k = Ae^{-Ea/RT}$
$ \ln\frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) $	$\ln k = -\frac{E_a}{R} \left(\frac{1}{T}\right) + \ln A$	1 V = 1 J/C
$K_{\rm p} = K_{\rm c}({\rm RT})^{\Delta {\rm n}}$	$K_{\rm w} = 1.0 \times 10^{-14}$	$K_{\rm a} \times K_{\rm b} = K_{\rm w}$
$K_{\rm w}=[{\rm H_3O^+}][{\rm OH^-}]$	$pH = pK_a + \log \frac{[base]}{[acid]}$	$pH = -log[H_3O^+]$
$pOH = -log[OH^{-}]$	$\Delta G = \Delta G^{\circ} + RT \ln Q$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$\Delta S^{\circ}_{rxn} = \sum n(S^{\circ}_{prod}) - \sum n(S^{\circ}_{reac})$	$\Delta H^{\circ}_{\text{rxn}} = \sum n(\Delta H^{\circ}_{\text{prod}}) - \sum n(\Delta H^{\circ}_{\text{reac}})$	$K = e^{-\Delta G^{\circ}/RT}$
$\Delta G^{\circ} = -nFE^{\circ}$	$\Delta G^{\circ}_{\text{rxn}} = \sum n(\Delta G^{\circ}_{\text{prod}}) - \sum n(\Delta G^{\circ}_{\text{reac}})$	$F = 96,485 \text{ J/V} \cdot \text{mol}$
$S = k \ln \mathbf{W}$	$k = 1.38 \times 10^{-38} \text{ J/K}$	1 A = 1 C/s
$E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$	$E = E^{\circ} - (0.0592/n) \log Q$	$E = E^{\circ} - (RT/nF) \ln Q$

Order in [A]	Rate Law	Integrated Form, y = mx + b	Straight Line Plot	Half-Life t _{1/2}
zero-order $(n=0)$	$rate = k [A]^0 = k$	$[\mathbf{A}]_{t} = -kt + [\mathbf{A}]_{0}$	$[A]_t$ vs. t	$t_{\frac{1}{2}} = \frac{[A]_0}{2k}$
first-order (n = 1)	$rate = k [A]^1$	$\ln[A]_t = -kt + \ln[A]_0$	ln[A] _t vs. t	$t_{1/2} = \frac{\ln 2}{k} = \frac{0.693}{k}$
second- order (n = 2)	$rate = k [A]^2$	$\frac{1}{[A]_{t}} = kt + \frac{1}{[A]_{0}}$	$\frac{1}{[A]_t}$ vs. t	$t_{1/2}=\frac{1}{k[A]_0}$

Various Constants at 25°C

Substance	Formula	
Formic acid	HCHO ₂	$K_{\rm a} = 1.8 \times 10^{-4}$
Chlorous acid	HClO ₂	$K_{\rm a} = 1.1 \times 10^{-2}$
Nitrous acid	HNO ₂	$K_{\rm a} = 4.6 \times 10^{-4}$
Ammonia	NH ₃	$K_{\rm b} = 1.76 \times 10^{-5}$
Ethylamine	CH ₃ CH ₂ NH ₂	$K_{\rm b} = 6.4 \times 10^{-4}$
Magnesium fluoride	MgF ₂	$K_{\rm sp} = 6.9 \times 10^9$
Tetraamminezinc(II) ion	$[Zn(NH_3)_4]^{2+}$	$K_{\rm f} = 2.8 \times 10^9$