

DO NOT OPEN

UNTIL INSTRUCTED TO DO SO

CHEM 111 – Dr. McCorkle – Exam #4A

While you wait, please complete the following information:

Name:

Student ID: _____

Turn off cellphones and stow them away. No headphones, mp3 players, hats, sunglasses, food, drinks, restroom breaks, graphing calculators, programmable calculators, or sharing calculators. Grade corrections for incorrectly marked or incompletely erased answers will not be made.

	GROUP 1 IA																	18 VIIIA
	1																	2
-	Н 1.01	2 IIA											13 11A	14 IVA	15 VA	16 VIA	17 VIIA	Не 4.00
	£	4											ъ	9	7	8	6	10
2	:5	Be											۵	U	z	0	щ	Ne
	6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
	11	12											13	14	15	16	17	18
m	Na	Mg	m	4	ഗ	9	7	00	თ	10	11	12	AI	s:	٩	S	U	Ar
	22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	Β	B	26.98	28.09	30.97	32.07	35.45	39.95
~	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	¥	പ	Sc	F	>	ۍ	Mn	Fe	ვ	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
-	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.97	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
ഹ	Rb	Sr	≻	Zr	qN	Mo	Tc	Ru	Rh	Pd	Ag	B	Ľ	S	Sb	Te	_	Xe
	85.47	87.62	88.91	91.22	92.91	95.95	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
9	ട	Ba	* P	Ħ	Ta	M	Re	S	<u>.</u>	Pt	Au	Нg	F	Рb	:E	Ро	At	Rn
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
	87	88	68	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
2	ድ	Ra	Ac **	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	5	Uut	☶	Uup	2	Uus	Ouo
	(223)	(226)	(227)	(267)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
				58	59	60	61	62	63	64	65	66	67	68	69	70	71	
	Ľ	Lanthanide Series *	Series *	e	Pr	Nd	Pm	Sm	Eu	Вd	Ъ	ð	우	ம்	Tm	γb	Lu .	
			X X	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97	
				06	91	92	93	94	95	96	97	98	66	100	101	102	103	
		Actinide Series **	eries **	Th	Pa	⊃	Np	Pu	Am	С	놂	უ	ß	Ë	Md	No	,, ,	
			74	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	

Periodic Table of the Elements

PERIOD

Multiple Choice – Choose the answer that best completes the question. Use an 815-E Scantron to record your response. [2 points each]

1.	What is the oxid	dation state of ca	rbon in $C_2 O_4^{2-}$?		
	A) +2	B) +3	C) +4	D) +5	E) +6
2.	In a voltaic cell	, which is true at			
	A) loses mass	towards it	B) cations are p		C) source of electrons
	D) cations flow	towards It	E) oxidation oc	curs	
3.			he redox reactior	n given below.	
	$3 Cl_2(g) + 2$	$Fe(s) \rightarrow 6 Cl^{-}(a)$	q) + 2 Fe ³⁺ (aq)		
		$aq) \mid Pt \parallel Fe(s) \mid$	· 1/		
		(g) Pt \parallel Fe ³⁺ (aq			
	C) $\operatorname{Fe}^{3+}(\operatorname{aq}) \operatorname{Fe}^{3+}(\operatorname{aq}) $	$e(s) \parallel Cl^{-}(aq) \mid Cl^{-}(aq$	₂ (g) Pt		

D) $Fe(s) | Cl_2(g) || Fe^{3+}(aq) | Cl^{-}(aq) | Pt$ E) $Fe(s) | Fe^{3+}(aq) || Cl_2(g) | Cl^{-}(aq) | Pt$

4. Which of the following is the weakest oxidizing agent?

A) $H_2O_2(aq)$ B) $Fe^{3+}(aq)$ C) $ClO_2(g)$ D) $F^{-}(aq)$ E) Fe(s)

5. Identify the characteristics of a spontaneous reaction.

A) $\Delta G^{\circ} < 0$ B) $\Delta E^{\circ}_{cell} > 0$ C) K > 1D) all of the above E) none of the above

6. How many electrons are transferred in the following reaction? (The reaction is unbalanced.)

$$I_2(s) + Fe(s) \rightarrow Fe^{3+}(aq) + \Gamma(aq)$$

A) 1 B) 2

C) 3

- D) 4
- É) 6

- 7. Which of the following statements is TRUE?
 - A) Gamma rays have the lowest ionizing power of any radioactivity.
 - B) Alpha radiation has the highest penetrating power of any radioactivity.
 - C) Beta emitters will do more damage than alpha emitters within the body.
 - D) Beta radiation has the highest ionizing power of any radioactivity.
 - E) None of the above are true.
- 8. Which of the following nuclides are most likely to decay via beta decay?
 - A) I-131
 - B) Ar-40
 - C) F-18
 - D) Zr-90
 - E) Pb-206
- 9. Which of the following statements is TRUE?
 - A) Positrons are similar in ionizing power and penetrating power to beta particles.
 - B) A positron is the antiparticle of the electron.
 - C) Beta decay occurs when a neutron changes into a proton while emitting an electron.
 - D) An alpha particle is a helium 2+ ion.
 - E) All of the above are true.
- 10. Use the standard half-cell potentials listed below to calculate the standard cell potential for the following reaction occurring in an electrochemical cell at 25°C. (The equation is balanced.)

 $\operatorname{Sn}(s) + 2\operatorname{Ag}^{+}(\operatorname{aq}) \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{Ag}(s)$

$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2 e^{-} \rightarrow \operatorname{Sn}(s)$	$E^{\circ} = -0.14 V$
$Ag^+(aq) + e^- \rightarrow Ag(s)$	$E^\circ=+0.80\ V$

A) +0.66 V B) +0.94 V C) +1.46 V D) -0.94 V E) +1.74 V Calculations – Write your initials in the upper-right corner of every page that contains work. For full credit show all work and write neatly; give answers with correct significant figures and units. Place a box around your final answer.

11. Balance the following reaction in basic solution using the half-reaction method: [6]

$$\operatorname{Cr}(\operatorname{OH})_4(\operatorname{aq}) + \operatorname{ClO}(\operatorname{aq}) \rightarrow \operatorname{CrO}_4(\operatorname{aq}) + \operatorname{Cl}(\operatorname{aq})$$

Dr. McCorkle

12. A concentration cell is created from zinc metal in 0.500 *M* zinc nitrate solution and iron metal in iron(II) nitrate solution. The potential of the cell is measured to be +0.322 V. What is the equilibrium concentration of Fe²⁺? [5]

Dr. McCorkle

- 13. Consider a voltaic cell composed of aluminum metal in aluminum nitrate solution and magnesium metal in magnesium nitrate solution.
 - a. Sketch the voltaic cell including the location of all metals and solutions. Label the cathode and anode; show the direction of electron flow and the movement of cations. [4]

b. Calculate E°_{cell} for the cell. [2]

c. Calculate the standard free energy of the cell. [2]

d. Calculate the equilibrium constant of the cell. [2]

- 14. Write nuclear equations for the following: [3 points each]
 - a. Lead-214 undergoes beta decay

b. Chlorine-36 undergoes electron capture

c. Fluorine-18 undergoes positron emission

15. Strontium-90 is a byproduct in nuclear reactors fueled by the radioisotope uranium-235. The half-life of strontium-90 is 28.8 yr. What percentage of a strontium-90 sample remains after 75.0 yr? [5]

Determine the binding energy per nucleon of an Mg-24 nucleus. The Mg-24 nucleus has a mass of 23.98504 amu. A proton has a mass of 1.00783 amu and a neutron has a mass of 1.00866 amu. [5]

17. A rock contains 0.313 mg of lead-206 for each milligram of uranium-238. The half-life for the decay of uranium-238 to lead-206 is 4.5×10^9 yr. How long ago was the rock formed? [5]

18. How many grams of chromium metal are plated out when a constant current of 8.00 A is passed through an aqueous solution containing Cr^{3+} ions for 320. minutes? [5]

19. Briefly describe two uses of radionuclides in nuclear medicine. Be specific and include the isotope(s) used. [3 points each]

- 20. Briefly explain the following concepts as they pertain to the neutron-induced fission of uranium-235 in nuclear reactors and weapons: [3 points each]
 - a. Why is ²³⁵U able to produce a self-sustaining chain reaction?

b. Why must uranium be enriched before it is suitable for use?

c. What is meant by the term "critical mass"?

Extra Credit: What famous scientist was in charge of the Manhattan Project? [2 points]

Scratch Page (to be handed in)

Formulas & Constants

$M = \frac{\text{mol solute}}{\text{liters solution}}$	$m = rac{ ext{mol solute}}{ ext{kg solvent}}$	$\chi_A = \frac{\text{mol } A}{\text{total moles}}$
$P_A = \chi_A \cdot P_A^o$	$R = 0.08206 \frac{\text{L·atm}}{\text{mol·K}}$	$R = 8.314 \frac{J}{\text{mol} \cdot \text{K}}$
$\Delta \mathbf{T}_{\mathbf{f}} = \underline{m} \cdot \mathbf{K}_{f}$	$\Delta \mathbf{T}_{\mathbf{b}} = \underline{m} \cdot \mathbf{K}_{b}$	$\Pi = \underline{M}RT$
$\Delta \mathbf{T}_{\mathbf{f}} = i \cdot \underline{m} \cdot \mathbf{K}_{f}$	$\Delta \mathbf{T}_{\mathbf{b}} = i \cdot \underline{m} \cdot \mathbf{K}_{b}$	$\Pi = i \cdot \underline{\mathbf{M}} \mathbf{R} \mathbf{T}$
$K = {}^{\circ}C + 273.15$	1 atm = 760 torr = 760 mmHg	$\mathbf{S}_{\text{gas}} = k_{\text{H}} \cdot \boldsymbol{P}_{\text{gas}}$
$\Delta H_{sol'n} = \Delta H_{hydration} - \Delta H_{lattice}$	$f = e^{-Ea/RT}$	$k = Ae^{-Ea/RT}$
$\ln\frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$	$\ln k = -\frac{E_a}{R} \left(\frac{1}{T}\right) + \ln A$	1 V = 1 J/C
$K_{\rm p} = K_{\rm c}({\rm RT})^{\Delta {\rm n}}$	$K_{\rm w} = 1.0 \times 10^{-14}$	$K_{\rm a} \times K_{\rm b} = K_{\rm w}$
$K_{\rm w} = [{\rm H}_3{\rm O}^+][{\rm O}{\rm H}^-]$	$pH = pK_a + \log \frac{[base]}{[acid]}$	$pH = -log[H_3O^+]$
$pOH = -log[OH^-]$	$\Delta G = \Delta G^{\circ} + RT \ln Q$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$\Delta S^{\circ}_{rxn} = \sum n(S^{\circ}_{prod}) - \sum n(S^{\circ}_{reac})$	$\Delta H^{\circ}_{rxn} = \sum n(\Delta H^{\circ}_{prod}) - \sum n(\Delta H^{\circ}_{reac})$	$K = e^{-\Delta G^{\circ}/RT}$
$\Delta G^{\circ} = -nFE^{\circ}$	$\Delta G^{\circ}_{rxn} = \sum n(\Delta G^{\circ}_{prod}) - \sum n(\Delta G^{\circ}_{reac})$	$F = 96,485 \text{ J/V} \cdot \text{mol}$
$S = k \ln \mathbf{W}$	$k = 1.38 \times 10^{-38} \text{ J/K}$	1 A = 1 C/s
$E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$	$E = E^{\circ} - (0.0592/n) \log Q$	$\mathbf{E} = \mathbf{E}^{\circ} - (\mathbf{R}\mathbf{T}/\mathbf{n}\mathbf{F}) \ln \mathbf{Q}$
Rate = kN	$t_{1/2} = \frac{0.693}{k}$	$ln \frac{N_t}{N_0} = -kt$
$ln\frac{rate_t}{rate_0} = -kt$	$c = 2.99792458 \times 10^8 \text{ m/s}$	$E = mc^2$

931.5 MeV = 1 amu 1 amu = 1.66054×10^{-27} kg

Order in [A]	Rate Law	Integrated Form, $y = \mathbf{m}x + \mathbf{b}$	Straight Line Plot	Half-Life t _{1/2}
zero-order (n=0)	rate = $k [A]^0 = k$	$[\mathbf{A}]_{\mathbf{t}} = -k\mathbf{t} + [\mathbf{A}]_{0}$	$[A]_t$ vs. t	$t_{\frac{1}{2}} = \frac{[A]_0}{2k}$
first-order $(n = 1)$	rate = $k [A]^1$	$\ln[\mathbf{A}]_{\mathbf{t}} = -k\mathbf{t} + \ln[\mathbf{A}]_{0}$	$\ln[A]_t$ vs. t	$t_{\frac{1}{2}} = \frac{\ln 2}{k} = \frac{0.693}{k}$
second- order (n=2)	rate = $k [A]^2$	$\frac{1}{[\mathbf{A}]_{\mathbf{t}}} = k\mathbf{t} + \frac{1}{[\mathbf{A}]_{0}}$	$\frac{1}{[A]_t}$ vs. t	$t_{\frac{1}{2}} = \frac{1}{k[A]_0}$ 13

CHEM 111 – Exam #4A

Fall 2014

duction Half-I	Reaction		E°(V)	
1.7	$F_2(g) + 2 e^-$	$\longrightarrow 2 F^{-}(aq)$	2.87	
Stronger idizing agent	$H_2O_2(aq) + 2 H^+(aq) + 2 e^-$	→ 2 H ₂ O(<i>l</i>)	1.78	Weaker
	$PbO_2(s) + 4 H^+(aq) + SO_4^{2-}(aq) + 2 e^-$	\longrightarrow PbSO ₄ (s) + 2 H ₂ O(<i>l</i>)	1.69	reducing ager
T	$MnO_4^{-}(aq) + 4 H^{+}(aq) + 3 e^{-}$	\longrightarrow MnO ₂ (s) + 2 H ₂ O(l)	1.68	
	MnO ₄ ^{-(aq)} + 8 H ⁺ (aq) + 5 e ⁻	\longrightarrow Mn ²⁺ (aq) + 4 H ₂ O(<i>l</i>)	1.51	
	$Au^{3+}(aq) + 3 e^{-}$	\longrightarrow Au(s)	1.50	
	$PbO_2(s) + 4 H^+(aq) + 2 e^-$	$\longrightarrow Pb^{2+}(aq) + 2 H_2O(l)$	1.46	
	$Cl_2(g) + 2 e^-$	> 2 CI (aq)	1.36	
	Cr ₂ 0 ₇ ²⁻ (aq) + 14 H ⁺ (aq) + 6 e ⁻	\longrightarrow 2 Cr ³⁺ (aq) + 7 H ₂ O(I)	1.33	
	$O_2(g) + 4 H^+(aq) + 4 e^-$	\longrightarrow 2 H ₂ O(<i>l</i>)	1.23	
	$MnO_2(s) + 4 H^+(aq) + 2 e^-$	\longrightarrow Mn ²⁺ (aq) + 2 H ₂ O(l)	1.21	
	$10_3^{-}(aq) + 6 H^+(aq) + 5 e^-$	$\longrightarrow \frac{1}{2}I_2(aq) + 3 H_2O(l)$	1.20	
	Br ₂ (<i>l</i>) + 2 e ⁻	$\longrightarrow 2 \text{ Br}^{-}(aq)$	1.09	-
	$VO_2^+(aq) + 2 H^+(aq) + e^-$	$\longrightarrow VO^{2+}(aq) + H_2O(l)$	1.00	
	$NO_3^{-}(aq) + 4 H^{+}(aq) + 3 e^{-}$	\longrightarrow NO(g) + 2 H ₂ O(l)	0.96	
	$CIO_2(g) + e^-$	\longrightarrow CIO ₂ ^{-(aq)}	0.95	
	$Ag^+(aq) + e^-$	\longrightarrow Ag(s)	0.80	
	$Fe^{3+}(aq) + e^{-}$	\longrightarrow Fe ²⁺ (aq)	0.77	
	0 ₂ (g) + 2 H ⁺ (aq) + 2 e ⁻	\longrightarrow H ₂ O ₂ (aq)	0.70	
	$MnO_4^{-}(aq) + e^{-}$	\longrightarrow MnO ₄ ²⁻ (aq)	0.56	
	l ₂ (s) + 2 e	→ 2 I ⁻ (aq)	0.54	
	$Cu^+(aq) + e^-$	\longrightarrow Cu(s)	0.52	
	$O_2(g) + 2 H_2O(l) + 4 e^-$	→ 4 0H ⁻ (aq)	0.40	
	$Cu^{2+}(aq) + 2 e^{-}$	→ Cu(s)	0.34	
	SO4 ²⁻ (aq) + 4 H ⁺ (aq) + 2 e ⁻	\longrightarrow H ₂ SO ₃ (aq) + H ₂ O(I)	0.20	
	$Cu^{2+}(aq) + e^{-}$	\longrightarrow Cu ⁺ (aq)	0.16	
	Sn ⁴⁺ (aq) + 2 e ⁻	\longrightarrow Sn ²⁺ (aq)	0.15	
	2 H ⁺ (aq) + 2 e ⁻	$\longrightarrow H_2(g)$	0	
	$Fe^{3+}(aq) + 3 e^{-}$	\longrightarrow Fe(s)	-0.036	
	$Pb^{2+}(aq) + 2 e^{-}$	\longrightarrow Pb(s)	-0.13	
	Sn ²⁺ (aq) + 2 e ⁻	\longrightarrow Sn(s)	-0.14	
	Ni ²⁺ (aq) + 2 e ⁻	\longrightarrow Ni(s)	-0.23	
	$Cd^{2+}(aq) + 2 e^{-}$	\longrightarrow Cd(s)	-0.40	
	$Fe^{2+}(aq) + 2 e^{-}$	\longrightarrow Fe(s)	-0.45	
	$Cr^{3+}(aq) + e^{-}$	\longrightarrow Cr ²⁺ (aq)	-0.50	
	Cr ³⁺ (aq) + 3 e ⁻	\longrightarrow Cr(s)	-0.73	
	$Zn^{2+}(aq) + 2 e^{-}$	\longrightarrow Zn(s)	-0.76	
	2 H ₂ O(/) + 2 e ⁻	\longrightarrow H ₂ (g) + 2 OH ⁻ (aq)	-0.83	
	Mn ²⁺ (aq) + 2 e ⁻	\longrightarrow Mn(s)	-1.18	
	$Al^{3+}(aq) + 3 e^{-}$	$\longrightarrow Al(s)$	-1.66	
	$Mg^{2+}(aq) + 2 e^{-}$	\longrightarrow Mg(s)	-2.37	
	Na ⁺ (aq) + e ⁻	→ Na(s)	-2.71	
	Ca ²⁺ (aq) + 2 e ⁻	\longrightarrow Ca(s)	-2.76	
	Ba ²⁺ (<i>aq</i>) + 2 e ⁻	\longrightarrow Ba(s)	-2.90	
Weaker	$K^+(aq) + e^-$	\longrightarrow K(s)	-2.92	Stronger
dizing agent	Li ⁺ (aq) + e ⁻	\longrightarrow Li(s)	-3.04	reducing ager