Name:			ite:
1.5 ho provid signific this sh paper, your h	ours to compled. All work cant figures. neet, remove, please raise and. Good Lertify that the w	ons (with parts) on this examination totaling 105 points lete this examination and may only use a basic scien must be shown for credit AND all answers must be an extra sheet is attached that may be used as "scrate from exam, and submit at the end of the examination your hand. Please sign the honor code below. If you suck!	expressed with the proper amount of ch" paper. Clearly write your name of period. If you need additional scratch need further clarification, please raise
	ase answer tops. total; 1 pt o	he following True/False questions by circling the approeach)	opriate response.
a.	When "exc	cited", electrons move from a lower to higher energy st	tate. T F
b.	Isotopes ha	ave the same atomic mass, but differing atomic number	ers. T F
c.	Strong force	ees between molecules results in lower melting/boiling	g points. T F
d.	Dispersion	forces are stronger than dipole-dipole forces.	T F
2. Ple		e appropriate response. (33 pts. total; 1.5 pts each blank, ex	
a.	lodine has	its outermost electron on this energy level	
b.		eactive (strongest desire to react) alkali metal is (symb	pol); the most reactive
C.	Consider S	Se and Te? The smaller atom is $\frac{\text{Se}}{\text{In Se}}$ and $\frac{\text{Se}}{\text{In Se}}$	has a greater desire for electrons.
d.	Nonmetals	always electrons when they react, and a	are called anions or cations. Circle one.
		as $\underline{\hspace{1cm}}$ valence electron(s) and this Lewis Dot struc	
f.	The alkali r	metal on n = 4 $\frac{gains}{}$ or ${loses}$ (Grove one) this number of	of electron(s) after it reacts

g. Which has the greatest energy: Yellow light or Intigo light? Circle one.

- h. Which has the shorter wavelength, Infrared radiation of UV radiation? circle one.
- i. A molecule has a total of three electron groups around a central atom, two of which are bonded to
- atoms. The 3D, Molecular geometry is $\frac{120}{\text{Br}}$ and bond angles are $\frac{120}{\text{Cl}}$.

 Is CCl₃Br polar? j. Is CCl₃Br polar? _____
- k. The number of orbitals found on n= 3 is ______, the total number of electrons that can be held in a f-sublevel is $\underline{\hspace{1cm}}$, the total number of electrons in any orbital is $\underline{\hspace{1cm}}$, and the total number of electrons that can be held on energy level five is $\underline{50}$.
- I. The compound formed between Rb and N is $\frac{kb_3N}{}$ and the compound formed between Cu (II) and Cl is ________
- m. The <u>full</u> electron configuration for Sn is (5 pts):

1522522p63523p64523d104p65524d105p2

Consider the interaction of HBr to another HBr. Evaluate the Lewis Structures, determine polarity, and

DEN.Br = 2.8-2.1=0.7 (polar!)

4. Using your knowledge of Periodic Trends (9 pts total, 3 pts each):

Dr. Bolaños

a. Rank the elements (N, C, O) in order of increasing atomic size. (3 pts)

	<	\mathcal{N}	_ <	\mathcal{C}
Smallest atom			argest atom	

b. Please fill-in the trend across the Periodic Table that is governing this atomic size process. (3 pts)

TREND : As you	go across the Periodic Table, from _	left	to_right	,
atomic size	decreases		U	

c. Please explain WHY the trend above is seen. (3 pts)

as you go across period, L > R, # protons innucleus increases. The me in atoms on Rt side ful a stronger force pulling them towards nucleus smaller of

5. Please provide either the chemical name or chemical formula in the following table. SPELLING COUNTS! (16 pt total; 2 pts each)

Chemical Formula	Chemical Name
Ti(N03)2	titanium (II) nitrate
K20	potassium oxide
Ca ₃ (PO ₄) ₂	calcium phosphate
Cbr4	Carbon tetrabromide
Cr(OH) ₆	Chromium (VI) hydroxide
BrF₃	Brominetifluoride
Al ₂ S ₃	aluminum solfide
SF6	Sulfur hexafluoride

_____ Is this molecule polar?

(4 pts

SENS-0= 3.5-2.5= 1.0 (polar)

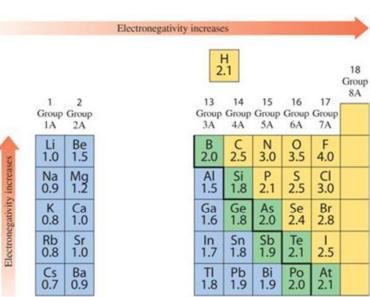
7. Fill out the blanks in the following table. Please designate, in the first column, if the substance is a neutral *element* or an *ion*. In the last column, specify if the <u>neutral form</u> of the specified substance is a metal, nonmetal or metalloid. ONLY FILL IN SPECIFED BOXES; OMIT those with "X" drawn through the box. (12 pts total, each box worth 1 pt)

Alternate Symbol (include charge and mass number)	Electron Configuration (abbreviated)	Atomic Number	Mass Number	Protons	Neutrons	Electrons
La (neutral atom)	[Rn]7s²	88	2267	\times	138	88
31 p ³⁻	[Ne]3523p6	X		15	16	18
59 - 3+ (von)		26	59	26	33	23

8. Please fill-in the table below for the two compounds provided. Show ALL work in table below (or scratch sheet) for credit. *No work, no credit, so make sure I can follow your notations!* (18 pts total, Lewis Structures are 4 pts each, 2 pt for geometry, 1 pt for polar bond(s), 2 pts for polarity.)

Compound and valence e	Lewis Dot Structure	Molecular Geometry	List polar bonds (format: A- X)	Polar or Non-polar Molecule ?
SeO₃ 24e	: O: : O: : O: :	trigunal plan ar	DEN 0-Se = 3.5-2.4 = 1.1 (polar!)	honpolar
NCl ₃	· Cl. W. Cl.	trigonal pyramidal	N-Ce 3.0-3.6= 0	polor

Reference Sheet


 Δ EN = (0- 0.4) = nonpolar

 $\Delta EN = (0.41-1.8) = polar$ $\Delta EN > 1.8 = ionic$

TABLE E 14 Examples of Change of Molecules

Molecule	Electron-Dot Formula	Bonded Atoms	Molecular Shape (angle)	
Two (2) electron	groups around the centra	al atom		
BeCl ₂	:Cl:Be:Cl:	2	linear (180°)	
CO ₂	:ö::c::ö:	2	linear (180°)	
Three (3) electro	on groups around the cent	ral atom		
BF_3	:F: :F:B:F:	3	trigonal planar (120°)	
SO_2	:0: s :0:	2	bent (120°)	
Four (4) electron	n groups around the centr	al atom		
CH ₄	н н:С:н н	4	tetrahedral (109.5°)	-
NH ₃	н:й:н й	3	trigonal pyramidal (107°)	
H ₂ O	:ö:н н	2	bent (105°)	

© 2010 Pearson Education, Inc.

