CHEM 111- Exam 4

There are 14 questions totaling 103 (scored out of 100) points. PLEASE look over the entire examination (7 test pages; 10 pages total) BEFORE you begin to ensure your packet is complete. REMEMBER: The best place to start your exam may not be at the beginning! You have 2.75 hours to complete this examination and may only use a basic scientific calculator, the resource sheet and the periodic table provided. For Questions 9 -14, all work must be shown for credit. Please sign the honor code at the end of the document, when complete. If you need further clarification, please speak with the *** I certify that the work presented in this examination is my own and that the rules set-forth for this instructor. examination were followed.

Signature:

Questions 1-8: Each response/blank is worth 1.5 pts, unless noted otherwise. (22 pts total)					
1.	An loss of electrons denotes this redox process:; a reducing				
	agent gains or loses (circle one) electrons.				
2.	In a galvanic cell, the anion from the salt bridge flows into the; electrons flow towards the; electrons flow				
3.	Consider emitted radiation from nuclear processeshave the lowest ionizing				
	power . Gamma particles can be halted with				
	Which process generates more energy per gram: fission or fusion? This equipment/apparatus in the				
	core prevents the meltdown of a nuclear power plant The				
	greater the mass defect, the stable the binding energy of the formed nuclide.				
4.	In a electrolytic cell, E [°] _{cell} is <u>positive</u> or <u>negative</u> (circle one), and the cathode is connected to the terminal of a power supply.				
5.	Which one of the following materials would be <u>least</u> suitable for use as an electrode material in the				

- following standard half-cell: Fe³⁺ + e⁻ \longrightarrow Fe²⁺ $E^{\circ} = 0.77 V$
 - a. platnium b. silver c. carbon d. Iron
- 6. Please consider the two substances below and fill-in the table, as requested. (4 pts total)

Substance	IF RADIOACTIVE , Predicted Emission Type
Co-51	
Te-124	

7. During electron capture, the atomic number of formed nuclide: ______.

Possible fill-in answers: increases by x, decreases by y, or remains unchanged. You supply x and y, as needed.

8. Consider Table 1, below, and answer questions a-f below. SHOW PHASE LABELS in your answers. *No partial credit.* (14 pts total; 2 pts each)

Half Reaction	E°(V)
$Cd^{2+} + 2e^- \rightarrow Cd$ (s)	-0.40
$Pb^{2+} + 2e^- \rightarrow Pb$ (s)	-0.13
$Cu^{2+} + 2e^- \rightarrow Cu(s)$	+ 0.34
$Fe^{3+} + e^- \rightarrow Fe^{2+}$ (aq)	+0.77
Au³+ + 3e⁻ → Au(s)	+1.50

Table 1: Standard potentials of various half-reactions

- a. The unbalanced reaction that would produce the most favorable (spontaneous) ΔG is:
- b. The strongest reducing agent is ______ and the weakest oxidizing agent is

c. Which substance is most difficult to oxidize?

- d. Can Cu²⁺ oxidize Fe²⁺?
- A substance from Table 1, Question 7, that can be oxidized by HIO₃*, but <u>not</u> HCl is:
 **See half-reaction in Resource Section*
- f. The reaction: $Pb^{2+} + Fe^{2+} \longrightarrow Fe^{3+} + Pb$, occurs spontaneously in the reverse direction. <u>True or False?</u>

- 9. Please write a balanced nuclear reaction for each the following. No partial credit here! (12 pts total; 3 pts each)
 - a. O-17 undergoing positron emission:

b. Reaction showing creation of a beta particle:

c. A neutron induced reaction of Am-244 to form I-134, Mo-107 and neutron(s):

d. The partial decay series of At-218 is alpha, beta, beta. Please show the nuclear reaction representing the second decay.

- 10. You are asked to put together a *galvanic* cell using the Pb/Pb²⁺ and Cr³⁺/Cr²⁺ and couples. **NO PARTIAL CREDIT FOR ANY PARTS of this problem. Be careful!** (16 pts total)
 - Provide the shorthand notation for the galvanic cell, under standard conditions <u>and</u> circle the substance oxidized in notation. (5 pts)

b. The half- reaction that would occur in the anode would be: (3 pts):

c. Calculate the equilibrium constant, under standard conditions, for this galvanic cell. (4 pts).

d. If the concentrations of <u>each</u> aqueous substance in the galvanic cell were 0.15 M, the potential of the cell is ______ V. (4 pts)

	MnO ₄ _{(a}	_{aq)} + Br ⁻ _(aq)	→ Mn ²⁺ _(aq) + Br _{2 (I)}	(Basic solution)
11.	Write the balanced r	edox equatior	n for the reaction below in <u>basic</u> solutio	on. Show work for credit. (8 pts)

12. How long (in minutes) must a constant current of 41.0 A be passed through an electrolytic cell containing aqueous Cu^{2+} ions to produce 5.00 moles of copper metal? (7 pts)

5

- 13. A nuclear "intern" determines that an Australian rock contains 0.7008 g Pb-206 to every 1.749 g U-238. U-238 decays to Pb-206 with a half-life of 4.5 billion years. (12.5 pts total)
 - a. Assuming that the rock did not contain Pb-206 at the time of formation, how old is the rock? (8 pts)

b. How many decays has the U-238 emitted? (4.5 pts)

14. Oh, the power of nuclear reactions! Calculate the energy produced per gram of reactants for reaction below. The mass of H-2 is 2.014102 amu, He-3 is 3.016029 amu and the mass of neutron is 1.00866492 amu. **Show all work for credit.** (10 pts)

$${}^{2}_{1}H + {}^{2}_{1}H \rightarrow {}^{3}_{2}He + {}^{1}_{0}n$$

Scratch Sheet

NAME_____

REFERENCE SHEET

1 A = 1 C/s

$$1V = 1 J/C$$

 F= 96,485 C/mol e⁻
 $\Delta G^{\circ} = -nFE^{\circ}$

 E^o cell = 0.0592 log K
 E cell = E^o cell - 0.0592 log Q

 n
 n

 Rate = kN
 $t_{1/2} = 0.693/k$

 In $(\frac{Nt}{No})$ =-kt
 E = mc²

F= 96,485 C/mol e⁻ 1 amu = 1.66053873 x 10⁻²⁷ kg c = 2.9979 x 10⁸ m/s 1 e⁻ = 1.609 x 10⁻¹⁹ J

Select Standard Potentials

$IO_{3}^{-}(aq) + 6H^{+}(aq)$	+ 5 e ⁻ → ½ l ₂ (aq) + 3 H ₂ O (I)	E ^o = 1.20 V
NO_3^- (aq) + 4H ⁺ (aq) + 3 e ⁻ → NO (g) + 2 H ₂ O (I)	E ^o = 0.96 V
Hg ²⁺ + 2e ⁻ →	Hg (I)	E ^o = 0.854 V
2H ⁺ + 2e ⁻ →	H ₂	E ^o = 0.00 V
Pb ²⁺ + 2e ⁻ →	Pb	E ^o = -0.13 V
Cr ³⁺ + e ⁻ →	Cr ²⁺	E ^o = -0.50 V

