Nar The BEF beg she witl sub pre	me: ere are a GORE yc ginning! eet and f h the p mit you sented	Date:					
		Signature:					
Ple Qu	ase an estion	nswer Questions 1 (a-m) carefully; no partial credit! Point values are clearly stated on most problems. s 1(a-l) BLANKS are worth 1.5 pts each, unless otherwise specified. Show ALL work for Questions 2-8.					
1.	Please a.	e provide the appropriate response for each below. An industrial chemist, always interested in increasing the yield of products, finds a reaction with $K_c = 1 \times 10^0$ at 300 °C. At equilibrium, which predominates? Circle one.					
		i. Products are only present ii. Reactants are only present					
		iii. Products predominate iv. Reactants predominate					
		v. Both are present roughly at the same amount					
	b. c.	Consider two separate equilmolar solutions: a strong base solution and a strong acid solution. Compared to the strong acid, the strong base will have a: pH, a [OH ⁻] and a [H ₃ O ⁺]. For each blank, answer <u>higher or lower</u> . (4.5 pts total; 1.5 pts each) Consider the reaction: $2 CO(g) \iff CO_2(g) + C(s)$ The equilibrium expression (K _c) for the reaction is : (3 pts)					
	d.	True or False? Circle one. Lactic acid dissociates 100% in an aqueous solution.					
	e.	True or False? Circle one. F is a proton acceptor.					
	f.	Ba(OH) ₂ is the <i>best</i> example of a <u>Bronsted-Lowry Base</u> or Arrhenius Base or Lewis Base.					
	g.	g. Which solution yields a lower [H ₃ O ⁺] in solution: 0.100 M HNO ₃ <u>or</u> 0.100 M H ₂ CO ₃ ? <i>Circle one.</i>					
	h.	n. At 25 $^{\circ}$ C, a solution has a 0.033 M Ba(OH) $_2$ and 0.011 M KOH concentration. The pH of the solution is:					
		MUST HAVE correct # SF here! (3 pts)					

CHEM 111- Exam 2

- i. A solution contains aqueous $C_5H_5NH^+$ and CI^- . The solution is: <u>acidic</u>, <u>basic</u> or <u>neutral</u>. Circle one.
- j. A solution contains aqueous NH₄CN. The solution is: <u>acidic</u>, <u>basic</u> <u>or</u> neutral. *Circle one*.
- k. The conjugate base of H₂PO₄ is: ______.
- I. A pH of a 0.100 M benzoic acid solution is: ______. Watch SF's! (5.5 pts)

2. Consider the reactions and their respective equilibrium constants: **RXN 1:** NO $(g) + \frac{1}{2} \operatorname{Br}_2(g) \longleftrightarrow$ NOBr (g) $K_p = 5.3 \times 10^{-2}$

RXN 2:	$2 \text{ NO } (g) \longrightarrow N_2 (g) + O_2 (g)$	$K_p = 2.1 \times 10^{30}$
--------	---	----------------------------

a. What is the K_c value for <u>RXN 1</u>, above? Show work for credit. (5 pts)

b. Use the above reactions and their equilibrium constants to predict the equilibrium constant for this reaction (5 pts): $N_2(g) + O_2(g) + Br_2(g) \iff 2 \text{ NOBr } (g)$

3. Consider the reaction below at 298 K. At equilibrium, the partial pressures are 155 torr, 312 torr and 1.59 torr for H_2 , S_2 and H_2S respectively. What is the K_p for the reaction? (8 pts)

2 H₂S (g) $\langle H_2(g) + S_2(g) + S_2(g) + S_2(g) =$

4. Consider the reaction below, with $K_c = 3.9 \times 10^{-3}$. A mixture initially contains 0.390 M H₂S and 0.500 M SO₂ at a certain temperature. Calculate the equilibrium concentration of water. Show all work for credit. (8 pts) **2** H₂S (g) + SO₂ (g) $\xrightarrow{}$ **3** S (s) + **2** H₂O (g)

- 5. At a certain temperature, <u>triethylamine</u>, a weak base, has a K_b of 4.50 x 10⁻². Show all work for credit, watch your S.F. and clearly "BOX" your final answers. (13 pts total)
 - a. The K_a of the triethylamine's conjugate is ______. (2.5 pts)
 - b. Calculate the *percent ionization/association of <u>2.00 M triethylamine</u> at this temperature. (9 pts)*

c. Calculate the *pH of the solution*. (1.5 pts)

6. Consider the endothermic reaction below at 298 K. For each question, assume equilibrium conditions.

N₂(g) + 3H₂(g)
$$\leftarrow$$
 2 NH₃(g) K_p = 6.26 x 10⁻²², ΔH = +

- a. If the generated ammonia is siphoned off, removing it from the system, which direction, if any, is favored to re-establish equilibrium? (2 pts)
- b. If the temperature is decreased, which direction, if any, is favored to re-establish equilibrium? (2 pts)

c. If the volume of the system is increased, which direction, if any, is favored to re-establish equilibrium? (2 pts)

d. If a student measures the partial pressures for ammonia, nitrogen and hydrogen as 0.33 atm, 0.22 atm, and 0.11 atm, respectively, is the system at equilibrium? ______. Which direction, if any, does the reaction need to proceed to achieve equilibrium? ______.

(5 pts total; 2.5 pts each)

e. Which of the stresses (if any) indicated in Questions 6a, 6b, and 6c will results in a <u>changed</u> equilibrium constant? List letter(s) here, if any: ________. (2 pts)

CHEM 111- Exam 2

Spring 2015

7. Rank the following substances in order of increasing basicity when dissolved separately, to 0.200 M in water. **Provide correct** <u>**LETTERS**</u> in blanks below. Use scratch paper, as needed. Be careful here; very little partial credit! (12 pts)

a. **HIO b. LiClO₄ c. NaC₃H₅O₃**

d. C₅H₁₀NH₂Cl

e. NH₃

f. HIO₂

8. A solution contains 3.00 M arsenic acid, H₃AsO₄. Calculate the concentrations of ALL species at equilibrium and determine the pH. You will likely need a scratch (2nd page) to answer this question. *Don't forget about water equilibria*! *Show all work for credit.* Use additional scratch paper, as needed. (15 pts)

Question 8, cont.

RESOURCE SHEET

$$\begin{split} & \mathsf{R} = 0.08206 \ \mathsf{L}^{*} \ \text{atm} \ /\text{mol}^{*}\mathsf{K} \\ & \mathsf{K}_{\mathsf{p}} = \mathsf{K}_{\mathsf{c}}(\mathsf{RT})^{\Delta \mathsf{n}} \\ & \mathsf{K}_{\mathsf{w}} = 1.0 \ x \ 10^{-14} = [\mathsf{H}_{3}\mathsf{O}^{+}][\mathsf{OH}^{-}] \\ & \mathsf{K}_{\mathsf{a}}^{*}\mathsf{K}_{\mathsf{b}} = \mathsf{K}_{\mathsf{w}} \\ & \mathsf{pH} = -\mathsf{log}[\mathsf{H}_{3}\mathsf{O}^{+}] \\ & [\mathsf{H}_{3}\mathsf{O}^{+}] = 10^{-\mathsf{pH}} \\ & \mathsf{pH} + \mathsf{pOH} = 14 \end{split}$$

2 - 49C 64 - b + Quadratic

Table 1: Acid Dissociation Constants at 25 °C

Name	Formula	K _{a1}	K _{a2}	K _{a3}
Benzoic	$HC_7H_5O_2$	6.5 x 10 ⁻⁵		
Hydrocyanic	HCN	4.9 x 10 ⁻¹⁰		
Hypoiodous	HIO	2.3 x 10 ⁻¹¹		
Lactic	$HC_3H_5O_3$	1.4 x 10 ⁻⁴		
Phenol	HC ₆ H₅O	1.3 x 10 ⁻¹⁰		
Ascorbic	$H_2C_6H_6O_6$	8.0 x 10 ⁻⁵	1.6 x 10 ⁻¹²	
lodous	HIO ₂	2.3 x 10 ⁻⁵		
Arsenic acid	H₃AsO₄	5.5 x 10 ⁻³	1.7 x 10 ⁻⁷	5.1 x 10 ⁻¹²

Table 2: Base Dissociation Constants at 25 °C

Name	Formula	К _b
Ammonia	NH ₃	1.76 x 10 ⁻⁵
Piperidine	$C_5H_{10}NH$	1.33 x 10 ⁻³

SCRATCH SHEET

NAME:_____